

Jets and droplets from bursting bubbles

Frederik Brasz, Casey Bartlett, Peter Walls, Elena Flynn, Estella Yu, James Bird Boston University

> Basilisk/Gerris User's Meeting Princeton, NJ November 15, 2017

Introduction

 Started using Gerris for my PhD work here in Princeton (Craig Arnold's lab) in 2012

• Started postdoc at BU (Jacy Bird's lab) August 2016

Rising bubbles beneath inclined walls

Self-similar breakup of liquid cones

Jet drops from bursting bubbles

Jet drops from bursting bubbles

Jet drops from bursting bubbles

Motivation

- Atmospheric science
 - Sea spray aerosol particles act as cloud condensation nuclei, scatter radiation
 - Still significant uncertainties in climate forcing by aerosols

Richter & Veron 2016

Dynamic similitude

- Nondimensionalization:
 - Length: ${\cal R}$

– Time:
$$\tau \equiv \sqrt{\rho R^3/\gamma}$$

- Neglect gravity (valid for ${\rm Bo} \lesssim 0.01)$ (Bo $\equiv \rho g R^2/\gamma \rightarrow R \lesssim 0.3~{\rm mm}$)
- Only dimensionless parameter: Laplace number ${\rm La} \equiv \rho \gamma R/\mu^2$
 - Note: $La = 1/Oh^2$

- Increasing μ equivalent to decreasing R

Density, surface tension, viscosity: $\rho \qquad \gamma \qquad \mu$

Bubble bursting experiments

- Use glycerol-water solutions of varying concentrations to change viscosity, keeping $\,R\approx 200~\mu{\rm m}$

Bubble bursting experiments

 Non-monotonic relationship between size of the top jet drop and Laplace number

Bubble bursting experiments

 Non-monotonic relationship between size of the top jet drop and Laplace number

Previous simulations

- Duchemin et al. 2002 also observed nonmonotonic relationship in simulations
 - Limited resolution
 - Gap near minimum

Numerical simulations

- Axisymmetric simulations run in Gerris
 - Adaptive mesh refinement in regions of high curvature, vorticity: max level 14
 - Minimum cell size = $2.4 \times 10^{-4} R$
- Initialized as spherical bubble with popped cap
 - Neglect gravity
- Vary La, fixing $\rho_g/\rho = 1.2 \times 10^{-3}$ $\mu_g/\mu = 0.018$

Validation

• Air bubble in water with $R = 210 \ \mu m$ (La = 18000)

Simulation results

- Define inversion time t_0 as time when velocity of interface at center is maximum
 - Time of pinch-off t_p also labelled
- Same non-monotonic relationship

Simulation results

- Define inversion time t_0 as time when velocity of interface at center is maximum
 - Time of pinch-off t_p also labelled
- Same non-monotonic relationship

- Decompose drop size into
 - Shape factor $r^* \equiv r_d (\rho/\gamma)^{1/3} (t_p t_0)^{-2/3}$
 - Jet growth time $t^* \equiv (t_p t_0)/ au$

• Then
$$r_d/R = r^*(\text{La})(t^*(\text{La}))^{2/3}$$

- Decompose drop size into
 - Shape factor $r^* \equiv r_d (\rho/\gamma)^{1/3} (t_p t_0)^{-2/3}$
 - Jet growth time $t^* \equiv (t_p t_0)/ au$
- Then $r_d/R = r^*(La)(t^*(La))^{2/3}$

- As La decreases below 1200:
 - Viscosity delays pinch-off
 - Drop size increases with t^*

- Decompose drop size into
 - Shape factor $r^* \equiv r_d (\rho/\gamma)^{1/3} (t_p t_0)^{-2/3}$
 - Jet growth time $t^* \equiv (t_p t_0)/ au$
- Then $r_d/R = r^*(\text{La})(t^*(\text{La}))^{2/3}$

• As La increases above 1200:

- Less focusing of cavity with undamped capillary waves (Ghabache et al., 2014)
- Drop size increases with r^st

Size variations due to escape from pinch-off

Hoeppfner & Paré (2013), Recoil of a liquid filament: escape from pinch-off through creation of a vortex ring

Dimensional plot: Jet drop radius vs. bubble radius

- Seawater viscosity varies by almost a factor of 3 from 0 °C to 40 °C → strong La dependence on temperature
 - Drop size increases with temperature for $~R\gtrsim50~\mu{
 m m}$
 - Jet drops as small as 200 nm predicted in tropical waters

Conclusions

- Non-monotonic size relationship between bubble and top jet drop observed
- Decomposing self-similar jet growth into shape and time components can capture non-monotonic behavior

Jet drop sizes 1 mm
 predicted
 significantly
 smaller than 2 10 µm
 10% rule and 1 µm
 temperature dependent

Acknowledgments

- National Science Foundation Grant No. 1351466
- Ernie Lewis

Self-similar scaling: La=610

Self-similar scaling: La=1700

Self-similar scaling: La=7200

Gravity effects: Bo~0.2

Gravity effects: Bo~1

