Study of instability of fluid layers/filaments on substrates with Basilisk/Gerris

Shahriar Afkhami Dept. Mathematical Sciences New Jersey Institute of Technology

Basilisk/Gerris Users' Meeting, Paris 2019

GERRIS: Instability of nanoscale liquid metal filaments

[Hartnett et al., Langmuir, 2015]

Taylor-Culick velocities

 $\begin{array}{l} 0.1 \leq \mathsf{Oh} \leq 0.18 \\ 10 \leq L_0 \leq 18 \end{array}$

GERRIS: Instability of nanoscale liquid metal filaments

[Hartnett et al., Langmuir, 2015]

VOF for a Ni filament with/without freezing

slip-length = 20 nm $\theta = 90^{\circ}$

GERRIS with/without freezing compared to experimental results

GERRIS: Breakup of Finite Size Liquid Filaments Involving Substrate Effects

A. Dziedzic, M. Nakrani, B. Ezra, M. Syed, S. Popinet, EPJ E 2019

Breakup and no-breakup results compared to [PRL, 108, 074506, 2012]

Photographic images of PDMS filaments $Oh = 17, L_0 = 9 - 17 \text{ mm}$

GERRIS: Breakup of Finite Size Liquid Filaments Involving Substrate; Slip Effects

GERRIS: Breakup of Finite Size Liquid Filaments Involving Substrate Effects

	••	·
••	••	••
••••	••	••
••	88	••
••	•••	••••
•		
•	I	•

Instability of miscible liquid layers on substrates

Oh et al., Applied Surface Science 434, 2018: "The composition of the produced particles was controllable by changing the relative thickness of each layer"

http://basilisk.fr/sandbox/popinet/dewetting.c

Instability of miscible liquid layers on substrates

BASILISK: Instability of miscible liquid layers on substrates

 $\theta = 80^{\circ}$

Concentration distribution bottom layer

 $\mu_{\textit{bottom}} = \mu_{\textit{top}}$

 $\mu_{bottom} > \mu_{top}$

BASILISK: Instability of miscible liquid layers on substrates

Conclusions

- GERRIS: Breakup of Finite Size Filaments
 - We observe how substrate can strongly influence the no-breakup to breakup transition.
 - The results are considerably different from free-standing filaments that show no breakup for Oh> 1 regardless of AR value.
 - A careful comparison of the retraction speed with experimental results will allow the calibration of the slip length: Future Work.
- BASILISK: Instability of (Miscible) Fluid Layers on Substrates
 - We show that for a two layer thin film system, the linear stability analysis is unable to provide a complete picture.
 - Mainly the emergence of length scales that are not predicted by the linear stability analysis.
 - The results are consistent with the experimental study in [Applied Surface Science 434, 2018], suggesting the size distributions of final particles depend on layer combinations.