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Particle laden flow with basilisk
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Fictitious domain method: principle

Consider a domain € with boundaries I'1, ..., 4 filled with
(Newtonian) fluid and an (homogeneous) solid particle occupying
the domain P (t) with boundary 0P(t):

T3

fluid domain: Q\P (t)

Iy Ty

solid domain: P (t) with
boundary 0P (t)

I

Reference: (Glowinski et al., 1999).
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Fictitious domain method: starting point (in strong form)

- combined-equations of motion with Lagrange multipliers A:

pL<%+(u.V)u>:—Vp—i—V-(Z//,D)—)\in Q,

<1 - %) (M (% —g)) =y N0 P(t),

<1_&) (/dﬁ+wxlw):/ rx Xdxin P(t)
Ps dt P(t)

u—(U+w xr)=0over P(t)

- continuity equation
—V .-u=0over Q

- unknowns: u, p, U, w, A
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Operator splitting

The process can be seen as a particular initial value problem:

%+NS(¢)+Gra(¢)+Fd(¢):f

¢(t = 0) = ¢p.
Split in 3 and solve successively (Glowinski et al., 1999):

n+1/3 _ 4n
¢ ¢ + NS <¢n+1/3) _ fin-i-l,

At
¢n+2/3_¢n+1/3 nt2/3\ _ enil
At + Gra (¢ ) =f,
A 1) _ pnil
v Gt

with 7T + £ + £ = £ ((n+ 1)At). 3 |
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Operator splitting

Pros:

e Flexible for the choice of each sub-problem’s solvers: use any
available solver in your group/internet.

e Relatively easy to implement

e Robust (stable) and preserves stationnary solutions
(MacNamara and Strang, 2016)

Cons:

e First order accurate only
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Validation: Stokes flow through a periodic array of spheres

Tri-periodic domain. Flow initially at rest, motion imposed with a

pressure gradient.
Drag coefficint K, D diameter, ¢
concentration, V superficial
velocity

F; = 3muDKV;
D/2 = (3¢/4m)"/?

=2 [, o

Zick and Homsy (1982)

streamwise velocity
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Validation: Stokes flow through a periodic array of spheres

Validation of octrees with constant 2° cells per direction.

10?
® Zick and Homsy 1982

O Basilisk-dlmfd-6-levels
' Basilisk cut-cell-6-levels

<10t

10°

Drag coefficient K as a function of the concentration ¢.
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Stokes flow through a periodic array of spheres

First order convergence rate in space and time.
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Validation: Flow past a sphere, adaptive meshes

Flow past a sphere at 50 < Re < 250 with N =9,...,13 level of
refinement (34 — 136 points per diameter). Box size L/D = 30.




Validation: Flow past a sphere, adaptive meshes

Comparison of the drag coefficient K(Re) against previous works.

3 , , , ,
x * Roos and Willmarth 1971
—Johnson and Patel 1999
251 x © basilisk-dlmfd 1
2+
x
<15
1+ X
X
0.5
O |
0 50 100 150 200 250

Re

11/22



Validation: Flow past a sphere, adaptive meshes

Spatial convergence rate: ranging from 1.04 to 1.34.

107 g
~©~Re =50 error €
---Re =50 orderl.04
— Arvg-Re =100 error €
-~ Avrg-Re =100 order1.02
, > Arvg-Re =150 error €
- - - Avrg-Re =150 order1.05
- Arvg-Re =200 error €
o ---Avrg-Re =200 order1.18
- Arvg-Re =250 error €
- - - Avrg-Re =250 order1.34
10—3 4

10~

1074 1073 1072 107!
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Validation: flow past a cylinder at Re = 9500

15 level of refinement, domain size L/D = 18, resolution
215/18 ~ 1820pts/D. Equivalent cartesian grid 230 ~ 10°%cells

Axial vorticity w, (t) Animation of the mesh
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Validation: flow past a cylinder at Re = 9500

Comparison with respect to other codes/papers/techniques:
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Drag coefficient Cp Surface vorticty at t = 2.5

More at http://basilisk.fr/sandbox/cselcuk/starting-dimfd.c
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Two moving spheres in creeping shear flow

y "Analytical” solution:
= N .
= | dre B(r)
| E—ry—i—erx——z ly,
| | d B (7
?r_) ' 204 e ér) P
R - (E) |
I | rx I dt - Z
|
I X where
B} 20a _ ey (B(A) = A(F)
. inter-particle distance €= - )

r
a: sphere's radius

(Batchelor and Green, 1972) and (Lin et al., 1970)
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Two moving spheres in creeping shear flow

Time-step At = 1/3000:

2.2 ‘
—D/A =025
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Two moving cylinders in creeping shear flow

2D: Time-step At = 1/3000, mesh size D/A ~ 200, 11 levels of
refinnement

refinement criterion on & and the refinement criterion only on the
color field color field
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2D-lub-full-mesh.mp4
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2-lub-restricted.mp4
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Attempt to capture lubrication forces: preliminary

conclusion

Globally encouraging results:
e Lubrication force almost fully captured by brute-forcing
e No contact and sub-grid models

e Robust even when particles overlap
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Dynamic of multiple particles with Grains 3D

Coupling with Grains3D as granular solver (C++ code) with
Basilisk's Navier-Stokes solver (C code).
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Dynamic of a free falling cube, ps/ps = 7, Ga = 140

Box size L/D = 700, (equivalent) spatial resolution ~ 25pts/D.
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cubeL700D.mp4
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Dynamic of cluster of (600) particles at Re = 15

Simulations performed by Daniel Oliveira (L.S.U)

Basilisk dIimfd + grain3D Experiments by (Pignatel et al.,
2011)
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Re15-600p.mp4
Media File (video/mp4)


Re15-600p-exp.mp4
Media File (video/mp4)


Thank you for your attention !

More on my sandbox at: http://basilisk.fr/sandbox/cselcuk/
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The first, Navier-Stokes problem

Basilisk's global temporal-scheme for the Navier-Stokes problem
reads: given u”, A", find u"t1/2 p"t1/2 such that:

un+1/2 —u"

At
V- u"t2 2.

= [u- V" % [V~ (2H'D'J+1/2 [un+1/2]> _ Vpn+1/2] —an

Solved with a modified version of the projection scheme proposed
by (Bell et al., 1989).
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The second, granular problem

The second sub-problem is a pure granular problem which reads:
given UP, w" find UT/? w2 such that

n+1/2 _ pyn
(—ﬁ>/\// v =<1—ﬁ>Mg+Fc
Ps At Ps

n+1/2 _ ,,n
(1-2) () (12 s T
Ps At Ps

Can be solved with any granular solver that handles contact forces
and torques for multiple particles.
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The third, fictitious-domain problem

The fictitious-domain problem reads: given u"1/2, A" yt1/2,
w12 solve

n+l _ ,,n+1/2
Pt <%> — A" = X" over Q

n+1l _ pyn+1/2
( _ ﬁ) M urr-umE ) —/ A" dx over P(t)
Ps At P(t)

n+1 _ ,,n+1/2
() (1)) et
Ps At P(t)

u™t - (U”+1 + w1 x r) = 0 over P(t).

Saddle-point problem solved with an iterative algorithm (Uwaza).
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Interface reconstruction

Collocation point method: use of a Dirac delta function as basis
function for the Lagrange multipliers A:

L
A(x) = Z)\I(S(x—xl). (1)
=1

with L the number of Lagrange multipliers.

+Lagrange multiplier (L.m)

@ ® @ + + = + + + + Constraint cells
j ; ".Cell-center to L.m vector
® ® > | T+ o O A ) + | 02 x 2-stencil nodes
: - ; ; NlInterface-normal vector
: < 3 — 03 x 3-stencil nodes
b > - o + G;) | +Fluid nodes

; OBoundary cells
+ 4/ & O O + & o) o | Olnterior cells

@ UHalo cells

+ 4\ + ] O + + / + + |
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One sphere close to wall in Stokes flow

e Large box: L/a =60

e Periodicity on front/back
and left/right faces

e "Wall" for bottom/top faces

o fixed particle

e imposed velocity:
U=(0,-U.0),d=0
Te =2a/U.

d: gap distance
a: sphere's radius

Analytical solution:
1
Fo/Fst = (6/a) " — - log(6/2) +0.97128, (2)

(Brenner, 1961) and (Cooley and O'Neill, 1969)
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One sphere close to wall in Stokes flow

— Analytical
40 O Basilisk
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0

d/a
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One sphere close to wall: temporal convergence

case: §/a= 0.4

a/A ~ 34, 5/A ~ 25 a/AA ~ 68, 5/ ~ 50

[

1 — At = 0.01 1 1 — At =001
— At = 0.001 —At =0.001
— At = 0.00033333 —At = 0.00033333
0 . . . — Analytic o 0 . . . — Analytic L
0 5 10 15 20 25 30 35 0 2 4 6 8 10 12 14
t/T. #T.
11 levels of refinement 12 levels of refinemen
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One sphere close to wall: temporal convergence

More challenging case: §/a = 0.1:

a/A~34 5/A~3 a/A~68, /A ~6

12 T 12
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