

Basilisk/Gerris Users' Meeting 2019

DNS of turbulent bubbly flows

Sergio Chibbaro, Alice Jaccod, Alessio Innocenti, Stéphane Popinet Institut Jean Le Rond D'Alembert Université Pierre et Marie Curie, Paris, France

Institut Jean Le Rond D'Alembert

Bubbly flows

We want to study the agitation induced by bubbles in the continuous phase:

- Considering collective dynamics of many interacting bubbles
- Fully resolving the flow inside, outside and at the interface between the liquid and the bubble

- Different forces with respect to inertial particles, e.g. buoyancy, added-mass.
- Additional hydrodynamic forces due to wake interactions

We consider already formed bubbles, neglecting the phase of nucleation, growing and intrinsic dynamics.

The deformability and finite size are considered.

Numerical approach

Simulations are done with the **basilisk** code¹, an open-source software for the solution of partial differential equations on regular and adaptive Cartesian grids.

$$\nabla \cdot \mathbf{u} = 0$$

$$\rho \frac{\partial \mathbf{u}}{\partial t} + \rho \nabla \cdot (\mathbf{u} \otimes \mathbf{u}) = -\nabla P + \nabla \cdot (2\mu \mathbf{D}) + \mathbf{g} + \sigma \kappa \delta_s \mathbf{n}$$

- The two fluids have different density and viscosity and are separated by a geometrical interface;
- The interface is tracked with the Volume-of-Fluid (VOF) method;
- Curvature is estimated through the height-function;
- Possibility to use adaptive meshes (quadtree, octree).

 $\underline{\rho_c d^2}g$ $/\rho_c^2 d^3 g$ $E_0 =$

 ρ_b/ρ_l μ_b/μ_l

¹ http://basilisk.fr

Regimes

Regimes

Resolving accurately bubbles with enough points is important in order to avoid unphysical behaviors

Periodic arrays

Computations with periodic arrays at low Reynolds number and different volume fraction

$$\mathbf{A}_k = (\rho_k - \langle \rho \rangle) \mathbf{g}$$

Acceleration term added in NS to avoid a mean downward flow

Periodic cell with a single rising bubble (Esmaeeli & Tryggvason JFM 1999 (front-tracking), Loisy et al. JFM 2017 (Level-Set))

Coalescence

- Coalescence can affect the dynamics of bubbly flows, changing the distribution of diameters and the number of bubbles;
- > VOF methods treat intrinsically the coalescence and usually overestimate it;
- > There is no geometrical constraint that prevents coalescence (like in front-tracking methods)
- > Empirical model that are used to avoid coalescences are not entirely satisfactory

Coalescence

 $L_{\rm max} = 11$ \implies $d_b/\Delta = 100$

Coalescence

Maximum level of refinement

This configuration is common in many industrial applications because of the excellent heat and mass transfer characteristic

- Layer of bubbles initially at the bottom of a tank
- $\langle \alpha \rangle \simeq 0.08$
- Gravity in the downward direction

Case	Ar	Eo	N	d_b/Δ
a	100	0.12	4096	82
b	140	0.20	8192	164
c	313	0.56	16384	328

Vorticity field

Ar = 100

Vorticity field

$$Ar = 140$$

Ar = 100

Bubbles interact strongly and deviate significantly from the vertical paths

Vorticity field

$$Ar = 140$$

Ar = 100 $15d \le l \le 25d$

Bubbles interact strongly and deviate significantly from the vertical paths

Spectra

For a more quantitative analysis of the fluid agitation we have evaluated the spectra of the velocity fluctuations (vertical component)

2d turbulence

In two dimensions it is known that there is an inverse energy cascade when energy is injected at some intermediate scale

Injection of energy at k_f

Filtering

To evaluate if there is a passage of energy between the scales we use a filtering approach

$$\frac{\partial \overline{e}_l}{\partial t} + \nabla \cdot \overline{\mathbf{q}}_l = -\Pi_l - D \qquad \prod_l \quad \text{Is the local energy flux}$$

Instantaneous snapshot of the local energy flux with two different filter width

[Chen 2006, Xiao 2009]

Filtering

Instantaneous snapshot of the local energy flux with two different filter width

Probability density function

Horizontal velocity fluctuations

3-dimensional simulation

Ar = 185Eo = 0.28 $\rho_l / \rho_b = 1000$ $\mu_l / \mu_b = 100$

mm size air bubbles in water

From 2D simulations we have seen that a high Ar is required together with many bubbles

The first well-resolved simulation with many interacting bubbles in a realistic configuration at high-Re

Preliminary statistical analysis

Spectrum of the velocity fluctuations in the vertical direction on different horizontal planes

Same scaling found in a bubble column experiment of Riboux et al. 2010

Conclusions

To obtain physical outcomes at high-Re it is needed:

Many bubbles must be included
Re (Ar) should be high enough to trigger spatio-temporal chaos
The number of points per bubble diameter scale roughly as ~Ar
Refinement has to be sufficient to resolve boundary layers

×

*

From the physical perspectives

Bubble wakes/interfaces inject energy and enstrophy on a broad spectrum
At high-Re (Ar) An inverse cascade is produced which shows the universality of the process
Bubble agitation appears as a typical random force with small correlation
The non-homogeneity plays a role in fluctuation dynamics as pointed out in experiments
3D We do not know...yet