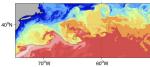
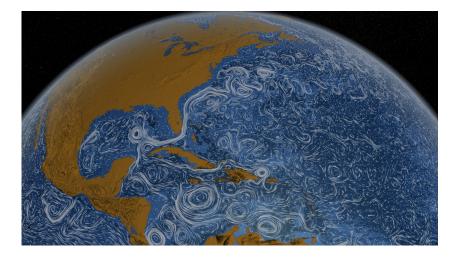
OCEAN TURBULENCE WITH BASILISK

B. Deremble June 17, 2019

BGUM, Paris



SURFACE CURRENTS IN THE OCEAN



From the ECCO reanalysis

CAN WE PARAMETERIZE OCEAN TURBULENCE IN CLIMATE MODELS?

Primitive equations (incompressible and Boussinesq):

$$\begin{aligned} \frac{\partial u}{\partial t} + u\nabla u - fv &= -\frac{\partial P}{\partial x} + \mathcal{F} + \mathcal{D} \\ \frac{\partial v}{\partial t} + u\nabla v + fu &= -\frac{\partial P}{\partial y} + \mathcal{F} + \mathcal{D} \\ \frac{\partial P}{\partial z} &= -\rho g \\ \frac{\partial \theta}{\partial t} + u\nabla \theta &= \mathcal{F} \\ \nabla u &= 0 \end{aligned}$$

SMALL PARAMETERS AND MULTIPLE SCALES

As in the Reynolds decomposition, we want to split all variables into a small-scale and large-scale component

$$\theta \to \overline{\theta} + \theta'$$

But we also use the small parameters to simplify the equations

$$\rightarrow$$
 Aspect ratio $\epsilon = H/L$

- → Rossby number Ro = U/fl (< 1: strong impact of rotation) → Froude number Fr = U/NH (< 1: strong stratification)

 \rightarrow Length ratio $\delta = l/L$

The multiple scale decomposition rely on a good scale separation between the turbulent eddy scale $l \sim \mathcal{O}(Rd)$ and the planetary scale L

cf. full derivation in Pedlosky (1984)

The trubulent flow evloves according to the quasi geostrophic eqution from a vorticity equation to the QGPV equation

$$\frac{\partial q}{\partial t} + u\nabla q + \overline{U}\nabla q + u\nabla\overline{Q} = 0$$

$$q = \nabla^2 \psi + \frac{\partial}{\partial z} \left(\frac{Fr^2}{Ro^2} \frac{\partial \psi}{\partial z} \right)$$

- $\rightarrow~$ No forcing other than the large scale flow
- $\rightarrow Ro$ (Rossby number) and Fr (Froude number) are slowly varying in space

The trubulent flow evloves according to the quasi geostrophic eqution from a vorticity equation to the QGPV equation

$$\frac{\partial q}{\partial t} + u\nabla q + \overline{U}\nabla q + u\nabla \overline{Q} = 0$$

$$q = \nabla^2 \psi + \frac{\partial}{\partial z} \left(\frac{Fr^2}{Ro^2} \frac{\partial \psi}{\partial z} \right)$$

- $\rightarrow~$ No forcing other than the large scale flow
- $\rightarrow Ro$ (Rossby number) and Fr (Froude number) are slowly varying in space

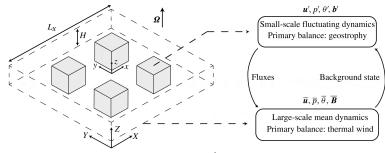
The trubulent flow evloves according to the quasi geostrophic eqution from a vorticity equation to the QGPV equation

$$\frac{\partial q}{\partial t} + u\nabla q + \overline{U}\nabla q + u\nabla \overline{Q} = 0$$

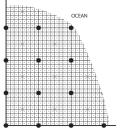
$$q =
abla^2 \psi + rac{\partial}{\partial z} \left(rac{Fr^2}{Ro^2} rac{\partial \psi}{\partial z}
ight)$$

- $\rightarrow~$ No forcing other than the large scale flow
- $\rightarrow Ro$ (Rossby number) and Fr (Froude number) are slowly varying in space

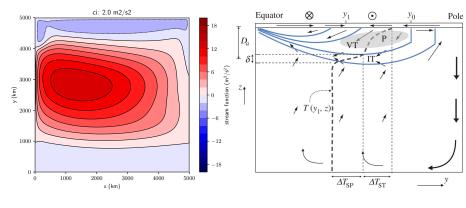
NUMERICAL IMPLEMENTATION WITH BASILISK



- $\label{eq:Well suited for a multiple scale} \ensuremath{\mathsf{problem}}$ well suited for a multiple scale problem
- $\rightarrow\,$ Good performance for the elliptic solver



THE LARGE-SCALE FLOW

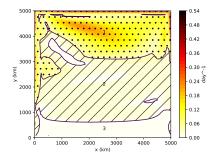


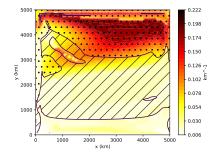
SSH

Vertical section

Samelson and Vallis (1997)

LINEAR STABILITY ANALYSIS

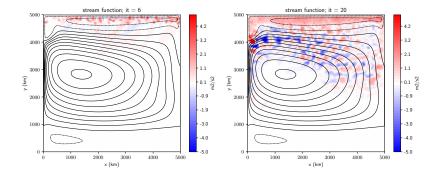




Time scale of the most unstable mode

Length scale of the most unstable mode

EDDY DYNAMICS



EDDY FEEDBACK ON THE LARGE-SCALE FLOW

