Phase change & Marangoni flows

Quentin Magdelaine

SVI – Saint-Gobain Research Paris, CNRS Jean-Le-Rond d'Alembert Institute – Sorbonne Université, CNRS

Alban Sauret, Frédéric Mondiot Jérémie Teisseire, Arnaud Antkowiak

I added a slide (14) with links toward my sandbox.

Introduction Wet coating

Applications

glass plates

glass fabrics

flexible substrates

wavy substrates Planilaque

Introduction
Wet coating

Drying of liquid films

relaxation or destabilization?

Polymer-based protective coating

- $h\sim 2-10~\mu m$
- roughness: 150 nm

Paints, protective and functionalized layers:
defects limit the applications
▶ what do they have in common? ▶ binary mixture

Model system: water - propylene glycol

0 % 50 μm

Model system: water - propylene glycol

0 % 50 μm

87 % 50 μm

x 6, 20 cm

Model system: water - propylene glycol

87 % 50 μm

x 6, 20 cm

50 % 50 μm

Model system: water – propylene glycol

0 % 50 µm

x 6, 20 cm

50 % 50 µm

87 % 50 µm

Model system

- key ingredients: evaporation & Marangoni stress
- set of equations

 $\rho_{\mathcal{V}} \frac{\mathrm{d} \mathbf{v}}{\mathrm{d} t} + \rho_{\mathcal{V}} \, \mathbf{v} \, \nabla \cdot \, \mathbf{v} = \rho_{\mathcal{V}} \, \mathbf{g} + \eta_{\mathcal{V}} \, \Delta \, \mathbf{v}$

$$\frac{\mathsf{d}c_{\mathcal{V}}}{\mathsf{d}t} + \nabla \cdot (c_{\mathcal{V}} \mathbf{v}) = \nabla \cdot (D_{\mathcal{V}} \nabla c_{\mathcal{V}})$$

 $\rho_{\mathcal{V}} \frac{\mathrm{d} \mathbf{v}}{\mathrm{d} t} + \rho_{\mathcal{V}} \, \mathbf{v} \, \nabla \cdot \, \mathbf{v} = \rho_{\mathcal{V}} \, \mathbf{g} + \eta_{\mathcal{V}} \, \Delta \, \mathbf{v}$

$$\frac{\mathsf{d}_{\mathcal{C}_{\mathcal{V}}}}{\mathsf{d}_{t}} + \nabla \cdot (c_{\mathcal{V}} \mathbf{v}) = \nabla \cdot (D_{\mathcal{V}} \nabla c_{\mathcal{V}})$$

$$\rho_{\mathcal{L}} \frac{d\mathbf{v}}{dt} + \rho_{\mathcal{L}} \mathbf{v} \nabla \cdot \mathbf{v} = \rho_{\mathcal{L}} \mathbf{g} + \eta_{\mathcal{L}} \Delta \mathbf{v}$$
$$\frac{dc_{\mathcal{L}_1}}{dt} + \nabla \cdot (c_{\mathcal{L}_1} \mathbf{v}) = \nabla \cdot (D_{\mathcal{L}_1} \nabla c_{\mathcal{L}_1})$$
$$\frac{dc_{\mathcal{L}_2}}{dt} + \nabla \cdot (c_{\mathcal{L}_2} \mathbf{v}) = \nabla \cdot (D_{\mathcal{L}_2} \nabla c_{\mathcal{L}_2})$$

$$\rho_{\mathcal{V}} \frac{d\mathbf{v}}{dt} + \rho_{\mathcal{V}} \mathbf{v} \nabla \cdot \mathbf{v} = \rho_{\mathcal{V}} \mathbf{g} + \eta_{\mathcal{V}} \Delta \mathbf{v} \qquad \mathbf{1}. \ \mathbf{c}_{\mathcal{V}} = \mathbf{c}_{\mathbf{s}} (\mathbf{c}_{\mathcal{L}_{1}})$$

$$\frac{d\mathbf{c}_{\mathcal{V}}}{dt} + \nabla \cdot (\mathbf{c}_{\mathcal{V}} \mathbf{v}) = \nabla \cdot (D_{\mathcal{V}} \nabla \mathbf{c}_{\mathcal{V}})$$

$$\rho_{\mathcal{L}} \frac{d\mathbf{v}}{dt} + \rho_{\mathcal{L}} \mathbf{v} \nabla \cdot \mathbf{v} = \rho_{\mathcal{L}} \mathbf{g} + \eta_{\mathcal{L}} \Delta \mathbf{v}$$

$$\frac{d\mathbf{c}_{\mathcal{L}_{1}}}{dt} + \nabla \cdot (\mathbf{c}_{\mathcal{L}_{1}} \mathbf{v}) = \nabla \cdot (D_{\mathcal{L}_{1}} \nabla \mathbf{c}_{\mathcal{L}_{1}})$$

$$\frac{d\mathbf{c}_{\mathcal{L}_{2}}}{dt} + \nabla \cdot (\mathbf{c}_{\mathcal{L}_{2}} \mathbf{v}) = \nabla \cdot (D_{\mathcal{L}_{2}} \nabla \mathbf{c}_{\mathcal{L}_{2}})$$

Implementations in Basilisk

Instabilities in thin films

Implementations

Evaporation of pure liquid

- **1.** Saturation of the vapor: $c_V = c_s$
- immersed Dirichlet boundary condition
- setpoint in the diffusion equation

 $\mathsf{d}_t c_{\mathcal{V}} = \nabla \cdot (c_{\mathcal{V}} \nabla c_{\mathcal{V}}) + \frac{c_s - c_{\mathcal{V}}}{\tau}$

Implementations

Evaporation of pure liquid

- **1.** Saturation of the vapor: $c_V = c_s$
- immersed Dirichlet boundary condition
- setpoint in the diffusion equation

 $\mathsf{d}_t c_{\mathcal{V}} = \nabla \cdot (c_{\mathcal{V}} \nabla c_{\mathcal{V}}) + \frac{c_{\mathsf{s}} - c_{\mathcal{V}}}{\tau}$

2. Evaporation velocity

$$\rho_{\mathcal{L}} \mathbf{v}_{\mathcal{E}} = -\mathbf{j}_{\mathcal{V}}^{\mathsf{D}} = D_{\mathcal{V}} \nabla c_{\mathcal{V}}$$

Implementations

Evaporation of pure liquid

- **1.** Saturation of the vapor: $c_V = c_s$
- immersed Dirichlet boundary condition
- **setpoint** in the diffusion equation $d_t c_{\mathcal{V}} = \nabla \cdot (c_{\mathcal{V}} \nabla c_{\mathcal{V}}) + \frac{c_s - c_{\mathcal{V}}}{\tau}$
- 2. Evaporation velocity

 $\rho_{\mathcal{L}} \mathbf{v}_{\mathcal{E}} = -\mathbf{j}_{\mathcal{V}}^{\mathsf{D}} = D_{\mathcal{V}} \nabla c_{\mathcal{V}}$

3. No flux condition at the interface:

$$\mathbf{j}_{\mathcal{L}_2}^{\mathsf{D}} = D_{\mathcal{L}} \, \nabla \, c_{\mathcal{L}_2} = \mathbf{0}$$

3. No flux condition at the interface:

 $\mathbf{j}_{\mathcal{L}_2}^{\mathsf{D}} = D_{\mathcal{L}} \, \nabla \, c_{\mathcal{L}_2} = \mathbf{0}$

Diffusion equation

$$d_{t}c_{\mathcal{L}_{2}} = \nabla \cdot (D_{\mathcal{L}} \nabla c_{\mathcal{L}_{2}})$$

& $\overline{c}_{\mathcal{L}_{2}} = \frac{1}{\Delta^{2}} \iint c_{\mathcal{L}_{2}} dS$
 $f d_{t}\overline{c}_{\mathcal{L}_{2}} = \nabla \cdot (f_{f} D_{\mathcal{L}} \nabla \overline{c}_{\mathcal{L}_{2}})$

► face value f_f of the liquid tracer f

3. No flux condition at the interface:

 $\mathbf{j}_{\mathcal{L}_2}^{\mathsf{D}} = D_{\mathcal{L}} \, \nabla \, c_{\mathcal{L}_2} = \mathbf{0}$

naive way: $f_{f} = (f_n + f_{n-1})/2$ nice way: VOF reconstruction Thank Jose-Maria López Herrera Diffusion equation

$$d_{t}c_{\mathcal{L}_{2}} = \nabla \cdot (D_{\mathcal{L}} \nabla c_{\mathcal{L}_{2}})$$

& $\overline{c}_{\mathcal{L}_{2}} = \frac{1}{\Delta^{2}} \iint c_{\mathcal{L}_{2}} dS$
 $f d_{t}\overline{c}_{\mathcal{L}_{2}} = \nabla \cdot (f_{f} D_{\mathcal{L}} \nabla \overline{c}_{\mathcal{L}_{2}})$

► face value f_f of the liquid tracer f

4. Tracer advection: the net allegory

t₁

4. Tracer advection: the net allegory

Advecting $c_{\mathcal{L}_2}$ along with f with $\mathbf{v}_{\mathcal{E}}$.

We concentrate the solute in the **next** cell. $\mathbf{v}_{\mathcal{E}}$ is **not** a flow.

 t_1

t2

4. Tracer advection: the net allegory

Advecting $c_{\mathcal{L}_2}$ along with f with $\mathbf{v}_{\mathcal{E}}$.

We concentrate the solute in the **next** cell. $\mathbf{v}_{\mathcal{E}}$ is **not** a flow.

The interface is more acting as a **net**.

t2

t1

4. Tracer advection: the net allegory

Advecting $c_{\mathcal{L}_2}$ along with f with $\mathbf{v}_{\mathcal{E}}$.

We concentrate the solute in the **next** cell. $\mathbf{v}_{\mathcal{E}}$ is **not** a flow.

The interface is more acting as a **net**.

t₂

t1

Redistribution of the solute of the **dry** cells.

Raoult law

$$c_{\mathcal{V}} = c_s(c_{\mathcal{L}_1}) = c_s \frac{c_{\mathcal{L}_1}}{\rho_{\mathcal{L}}}$$

Raoult law

$$c_{\mathcal{V}} = c_{s}(c_{\mathcal{L}_{1}}) = c_{s}\frac{c_{\mathcal{L}_{1}}}{\rho_{\mathcal{L}}}$$

Fast diffusion

Raoult law

$$c_{\mathcal{V}} = c_{s} \left(c_{\mathcal{L}_{1}} \right) = c_{s} \frac{c_{\mathcal{L}_{1}}}{\rho_{\mathcal{L}_{1}}}$$

Fast diffusion

Moderate

$$c_{\mathcal{V}} = c_{s}(c_{\mathcal{L}_{1}}) = c_{s}\frac{c_{\mathcal{L}_{1}}}{\rho_{\mathcal{L}}}$$

Fast diffusion

no surface tension

surface tension

Implementations Marangoni stress

Capillary force

$$d\mathbf{F}_{\ell} = (\gamma \mathbf{t})(s) - (\gamma \mathbf{t})(s + ds)$$

$$\mathbf{f}_{\mathsf{S}} = \mathsf{d}_{s}(\gamma \mathbf{t})$$

$$\mathbf{f}_{\mathsf{S}} = \gamma \kappa \mathbf{n} + \mathsf{d}_{s} \gamma \mathbf{t}$$

generalized in 3D:

 $\mathbf{f}_{\mathsf{S}} = \gamma \, \kappa \, \mathbf{n} + \nabla_{\mathsf{S}} \, \gamma$

Laplace pressure Marangoni stress

Implementations
Marangoni stress

Capillary force, two formulations

$$\mathbf{F}_{\ell} = (\gamma \mathbf{t})(s) - (\gamma \mathbf{t})(s + \Delta s)$$
$$\mathbf{f}_{\mathsf{S}} = \gamma \kappa \mathbf{n} + \nabla_{\mathsf{S}} \gamma$$

Brackbill formulation Brackbill, Kothe, Zemach, 1992 Seric, Afkhami, Kondic, 2017

- $\delta_{\rm S}$ is added to make it volumetric
- not easy to evaluate the surface gradient ∇_{S}

Implementations
Marangoni stress

Capillary force, two formulations

$$\mathbf{F}_{\ell} = (\gamma \mathbf{t})(s) - (\gamma \mathbf{t})(s + \Delta s)$$
$$\mathbf{f}_{\mathsf{S}} = \gamma \kappa \mathbf{n} + \nabla_{\mathsf{S}} \gamma$$

Brackbill formulation Brackbill, Kothe, Zemach, 1992 Seric, Afkhami, Kondic, 2017

- $\delta_{\rm S}$ is added to make it volumetric
- not easy to evaluate the surface gradient ∇_{S}

Integral formulation Abu-Al-Saul, Popinet and Tchelepi, 2018

- already discrete
- well-balanced and momentum conservative

12/16

Instabilities Simulations & lubrication

Evaporation of a liquid mixture layer with Marangoni stress

Instabilities Simulations & Iubrication

Evaporation of a liquid mixture layer with Marangoni stress

horizontal velocity

Instabilities Simulations & Iubrication

Evaporation of a liquid mixture layer with Marangoni stress

horizontal velocity

Growth rate ω in function of $Pe_{\mathcal{E}} = \tau_D/\tau_{\mathcal{E}}$

high $\mathbf{v}_{\mathcal{E}}$ moderate $\mathbf{v}_{\mathcal{E}}$ low $\mathbf{v}_{\mathcal{E}}$

• agreement at small Péclet

Instabilities Simulations & Iubrication

Evaporation of a liquid mixture layer with Marangoni stress

horizontal velocity

Growth rate ω in function of $Pe_{\mathcal{E}} = \tau_D/\tau_{\mathcal{E}}$

 $\begin{array}{l} \text{high } \textbf{v}_{\mathcal{E}} \\ \text{moderate } \textbf{v}_{\mathcal{E}} \\ \text{low } \textbf{v}_{\mathcal{E}} \end{array}$

- agreement at small Péclet
- cross-diffusion limited at high Péclet: $\tau_{\mathcal{I}} = \tau_{D} + \tau_{\mathcal{I},th}$ dashed line

13/16

Conclusion Links toward the sandbox

Phase change

- header file for pure liquid
- examples: static, oscillating, falling, and blown drops
- additional header file for mixtures
- mwe: **diffusion** in a domain, **advection** with respect to a phase change velocity
- example: digitations at slow solute diffusion

Marangoni stress

- header files: straight line or circle arc extrapolations
- capwave mwe
- contact angles with straight line or circle arc extrapolations
- mwe with adaptive mesh
- Marangoni flow example

Conclusion **Further work**

Phase change

- Stefan flow and recoil pressure
 - ► Cécile Lalanne & Jose-Maria Fullana
- Embedded boundaries would ensure more precise conditions
 - ► Alexandre Limare & Christophe Josserand

Marangoni stress

- switch between height functions
- extend to 3D
- jump of the tangential viscous stress

Conclusion ► Viscous stress jump

 $\underline{\underline{\sigma}}$: stress tensor

Tangential stress continuity: $[\mathbf{t} \underline{\sigma} \mathbf{n}] = \nabla_{\mathsf{S}} \gamma \cdot \mathbf{t}$ $\blacktriangleright \partial_t \gamma = \mu_2 \left(\partial_t u_n |_2 + \partial_n u_t |_2 \right) - \mu_1 \left(\partial_t u_n |_1 + \partial_n u_t |_1 \right)$ Normal stress continuity: $[\mathbf{n} \underline{\sigma} \mathbf{n}] = \gamma \kappa$

