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via surface tension ? 

via density difference ?

Effect of  vorticity generated at an interface 



Axisymmetric or 2D flow
Immersed boundary
Two-phase flow 
Surface tension
Adaptative mesh refinement
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Part 1  
Interface and generation of vorticity   

in Two-dimensional Flows

Part II  
Two flow examples on the role of  
 Vorticity generated at an interface    



Lagrangian Domain A bounded  
by a Closed Material Line C 

in a Monophasic Case

production of  vorticity
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Lagrangian Domain A in a Two-phase  Flow  

Brons et al (JFM  2014)

Lagrangian domain with an interface separating two phases

[[Q]] ≡ Q1 −Q2



Across an interface separating two phases

The no-slip case [[�u]] = 0
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Σ ≡ −�n1→2 · [[ �J ]]

vorticity source

vorticity diffusion

Σ = Σ1 + Σ2

Σ1 ≡ −�n1→2 · �J (1)

Σ2 ≡ −�n2→1 · �J (2)
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vorticity generation by tangential pressure gradient

Viscous Diffusion

Projection along the tangential direction on the interface  

Navier-Stokes equation 

The no-slip case [[�u]] = 0
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Σ = 1
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∂
∂s [[p]] + [[ 1ρ ]]

∂pm
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  Laplace equation  on  normal stress and continuity equation

 Interface curvature κ

 To use the  jump  in pressure, we rewrite the source as

[[p]] = −2 [[µ]] ti∂i(uj)tj − σκ

ti∂i(uj)tj =
∂[ujtj ]

∂s − ∂tj
∂s uj =

∂[ujtj ]
∂s − κn1→2

j uj

ρm ≡ 2ρ2ρ1

ρ1+ρ2
, pm ≡ p1+p2
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extra 
vorticity 
source

 surface tension viscosity 
differencedensity 

difference  
viscosity 

difference
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�
I Σ ds = 0

When the interface is a loop,  i.e. phase 1 included in phase 2    

Equal production of positive or negative vorticity

 is the total production but not 
the production in each respective  phase   

Σ1 −Σ2 = 1
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1
ρ ]]ti ∂i[[p]] + 2 ti

ρm
∂ipm − tj

∂(�u·�n)2
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Dt [�u ·�t]

since the  vorticity source is a gradient

Σ



In  the sequel we set [[µ]] = 0

 surface tension density difference  

Continuity of velocity gradients  at interface  

[[ω]] = [[eij ]] = 0

Σ = − σ
ρm

∂κ
∂s + [[ 1ρ ]]

∂pm

∂s

Two-phase Flow Problems  



 A Single Vortex with an Interface separating two phases

uθ = Γ
1− exp(−(r/a0)2)

2πr
, ωz =

Γ

πa20
exp (−(r/a0)

2)

 Interface with a surface tension   σ x = a0

Fluid 1 is on the left of the «interface» and contains the vortex 

initially located at

Dimensionless Numbers   

Re =
Γ

2πν1
We =

ρ1Γ2

(2π)2a0σ

Fluid 2 is on the right  of the «interface» 

rρ ≡ ρ2

ρ1



θ =
1

r2
[1− exp(− r2

r21(t)
)]t+ φ0, r =

1

| cosφ0 | with φ0 ∈]− π/2,π/2[

Roll-up 

Width h ∼ 1

t3

We = ∞ rρ ≡ ρ2
ρ1

= 1



We �= ∞

«Two-phase» flows 
 

with   surface tension only

rρ ≡ ρ2
ρ1

= 1
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Vorticity stronger around  the tip of the interface  



Velocity generated by the extra vorticity 

vorticity stronger on the interface than in the vortex 



We = 100

Formation of a rim around  the tip

Shedding  of vorticity near the tip



We = 103

We = 102

We = 10

 Rim larger with decreasing Weber 
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We = 10 We = 5

Transition = Roll-up versus No roll-up  

creation of a dipole

We ∼ 14



 Fluid ejected in another  immiscible fluid  

Axisymmetric nozzle of radius R  

Fluid 1   fluid ejected

Fluid 2  ambient fluid 

Tube thickness

Thickness of the boundary layer  ∆0

At the nozzle exit, a velocity field is imposed

Surface tension  σ

ρ1

ρ2

ux(r, t) = U0 erf(t/T ) erf(η) with η =
y√
2∆0

, and y ≡ R− r ≥ 0

ν1

ν2

2b0

Two-phase Flow Axisymmetric Nozzle Problem



Dimensionless Numbers   

We =
ρ1U2

0R

σ

Re = U0R/ν1 = 1000

rρ ≡ ρ2

ρ1

rµ ≡ µ2

µ1
= 1

U0T/R << 1

Three aspect ratios

b0/R = 0.05 ∆0/R = 0.05



  Axisymmetric Nozzle Problem 

     

 Passive scalar field

(b) No density difference(b) No density difference

 Vorticity field

Vorticity Roll-up and Entrainment   

Re = U0R/ν = 1000



Roll-up and Formation of  a Rim

Vortex Slightly Modified

We = 1000

orange line:  
classical case 



Roll-up and Formation of a Larger Rim
 Vorticity Field Modified

We = 100



Fragmentation  (t=40):  Vorticity and Interface 

We = 1000

We = 100



Transition for two-phase flow with surface tension

Entrainment 

No entrainment
Vortex roll-up 
inside ejected fluid 

We = 10

We = 100
Roll-up Regime 

Bag Regime



We = 10
Generating Soap Bubbles !  



Two-phase flows 

with density difference only

 

We = ∞

rρ ≡ ρ2
ρ1

�= 1



Interface  Roll-up and Entrainment Modified 

We = ∞
ρ2/ρ1 = 1.2ρ2/ρ1 = 0.83ρ2/ρ1 = 1

Sharp point on the interface at short times

Instability
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Velocity generated by the extra vorticity 

Trace of Moore Singularity ?



ρ2
ρ1

= 1.2
ρ2
ρ1

= 2
ρ2
ρ1

= 5

 Creation of smaller structures at the tip  
as density difference increases

Thinner ligament and rim  
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 extra vorticity changes sign
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 Gas-jets large bubbles  liquid-jets small drops



«Two-phase» flows 

with density difference  and 

with   surface tension
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rρ = 5 We = 1000

Similar  dynamics than for  We = ∞
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rρ = 5 We = 1000

Vorticity quickly breaks the ligament and surface tension plays a minor role



rρ = 5

Surface tension becomes dominant
Saturation  before the end of sharpening dynamics  

We = 100 < We2c



Conclusions

Vorticity production at the interface by
 

surface tension linked to the gradient of curvature

density difference linked to pressure gradient along 
interface
 

Extra-vorticity  changes the interface 
dynamics   

Emergence  of small structures caused
by the interaction vorticity -- interface


