

Drop impact formed vortex rings

Muhammad Saeed Saleem

Master student (2017-2019) Xi'an Jiaotong University

Nathan BLANKEN, Hossain Chizari, Marie-Jean THORAVAL Basilisk/Gerris Users' Meeting 2019 18 June 2019

Background: Drop impact on a pool of same liquid

Increasing Impact velocity

Bouncing Droplet

Velocity = 0.31 ms⁻¹

Vortex ring formation

Velocity = 0.88 ms⁻¹

Central jet formation

Velocity = 2.8 ms⁻¹

Background: Application of vortex rings

- During the formation of vortex ring it experience number of intermediate shapes from spherical to toroidal.
- These Intermediate can be frozen at controlled time point into particles by gelation or precipitation process.
- Electro spraying technique with their sizes well controlled from hundreds of microns to millimeters.
- Applicable to broad range of material.
- Bioencapsulation
- Catalytic reactions
- Structural materials construction

Figure 6 | Composite and assembly of donut-microVRP. (a) Donut-microVRP made from composite materials: nanoclay/nanosilica, nanoclay/alginate. (b) Magnetic donut-microVRP: nanosilica/Fe₃O₄ nanoparticles and nanoclay/Fe₃O₄ nanoparticles. (c) Schematic illustration of the assembly process and a microscopic image of the 1D structure made from nanoclay hydrogel donut-microVRP. (d) Schematic illustration of the assembly process and a microscopic image of the 2D structure made from magnetic nanoclay hydrogel donut-microVRP. (e) Schematic illustration of the nozzle design and a microscopic image of the Janus donut-microVRP. (red: alginate labelled with Alexa Fluor 594 dye; green: alginate labelled with Alexa Fluor 488 dye) (f) Schematic illustration of the nozzle design and a microscopic image of the core-shell donut-microVRP. (g) Directional assembly of the Janus magnetic nanosilica donut-microVRP; the arrow indicating the direction of the magnetic field. Scale bars, 400 μ m (a,b); 2 mm (c,d,f); 1mm (e,g).

An, D., Warning, A., Yancey, K. G., Chang, C.-T., Kern, V. R., Datta, A. K., ... Ma, M. (2016). Mass production of shaped particles through vortex ring freezing. *Nature Communications*, *7*, 12401. https://doi.org/10.1038/ncomms12401

Background: Application of vortex rings

- During the formation of vortex ring it experience number of intermediate shapes from spherical to toroidal.
- These Intermediate can be frozen at controlled time point into particles by gelation or precipitation process.
- Electro spraying technique with their sizes well controlled from hundreds of microns to millimeters.
- Applicable to broad range of material.
- Bioencapsulation
- Catalytic reactions
- Structural materials construction

Figure 5 | Bioencapsulation applications using donut-microVRP. (a) A nanoclay hydrogel donut-microVRP encapsulating plasmid DNA: bright-field image and fluorescent image (stained with GelGreen). (b) Kinetic curve of the GFP fluorescence from cell-free protein production. Error bars in b represent one s.d. of the data away from the mean. (c) Fluorescent images of the reaction wells of cell-free protein production with (left) or without (right) nanoclay donut-microVRP. (d) A nanoclay hydrogel donut-microVRP encapsulating bacteria: bright-field image and fluorescent image (GFP-expressing *E. coli*). (e) Alginate hydrogel donut-microVRP encapsulating MDA-MB-231 cells that express Tomato red. (f) Cell viability test of the MDA-MB-231 cells encapsulated in an alginate spherical particle and an alginate donut-VRP, 4 days after encapsulation. The cells were stained with calcium-AM (green, live) and ethidium homodimer (red, dead). (g) Rat pancreatic islets encapsulated in the alginate donut-VRP. Scale bars, 400 μm (a, d, e right panel); 3 mm (c); 2 mm (e left panel, f, g).

An, D., Warning, A., Yancey, K. G., Chang, C.-T., Kern, V. R., Datta, A. K., ... Ma, M. (2016). Mass production of shaped particles through vortex ring freezing. *Nature Communications*, *7*, 12401. https://doi.org/10.1038/ncomms12401

Problem Statement

- Effect of pool depth?
- Vortex ring formation
 - In pool of different depths?

How will pool depths effect the dynamics of vortex ring?

Problem Statement

- High-speed imaging & numerical simulation to characterize the dynamics in different pool depths.
- This will allow us to better control the shape of the particles and eventually produce sophisticated hierarchical materials.

Non-dimensional parameters: Drop impact on a pool of same liquid

Reynold number:

Relates inertial forces to viscous forces

Weber number:

Relates inertial forces to surface tension force

Froude number:

Relates inertial forces to gravitational forces

Geometrical aspect ratio:

Ratio of pool depth to drop diameter

Non-dimensional parameters: Drop impact on a pool of same liquid

Time scale:

The time vortex ring take to move one drop diameter defined as:

Length Scale:

The radial coordinate and axial coordinates are nondimensionalized by drop diameter

 $t^* = t/(D/V)$

$$r^* = r (t) / D$$
$$z^* = z (t) / D$$

Symbolic representations

Vortex ring (b); Crater depth (c); Wave swell (w);

Vortex ring formation

- Drop & Pool liquid: 30% glycerin solution
- Velocity = 0.99 ms⁻¹
- Drop Diameter = 2.73 mm
- Reynolds = 1300
- Weber = 41
- Froude = 6
- Pool depth: h* = 4.39, 2.19, 1.01, 0.91, 0.73, 0.55, 0.36, 0.18, 0.1

Vortex ring formation: Two views experiments

Vortex ring formation: Trajectory merging of two views

Positive View Negative View r_b 0.2 0.4 0.6 0.8 0 (b) (a) 0 (c)(C -0.2 * N⁰ -0.4 (d) -0.6 g view-exp e -0.8 view-exp

Vortex ring formation: Trajectory deep & shallow pools

Numerical Simulation: Numerical setup

- Drop & Pool liquid: 30% glycerin solution
- Velocity = 0.99 ms⁻¹
- Drop Diameter = 2.73 mm
- Reynolds = 1300
- Weber = 41
- Froude = 6
- Pool depth: h* = 1.01
- Systematic decrease of h* = 8.79, 4.39, 2.19, 2.02, 1.85, 1.65, 1.47, 1.29, 1.10, 0.91, 0.73, 0.55, 0.36, 0.18, 0.10

Numerical setup: Simulation domain

- Minimum level of refinement = 7
- Maximum level of refinement = 12
- No of cells per drop diameter = 409

Tracking of vortex ring trajectory: Validation

Three regimes: Two transitions in vortex ring dynamics

Evolution of crater depth and vortex ring diameter

18

Maximum Vortex ring diameter and crater depth

Maximum crater depth

Shallow pool regime Deep pool regime Thin film

Maximum Vortex ring diameter and crater depth

Time of maximum crater depth

Correlation between crater depth and vortex ring

Interface profiles for h*: 8.79

Interface profiles for h*: 1.10

Black: Maximum vortex ring diameter (R^{*}_B); Blue: Maximum Crater depth (Z^{*}_C); ²¹

Correlation between crater depth and vortex ring

Evolution of wave swell height and vortex ring diameter

Maximum wave swell height and vortex ring diameter as a function of pool depth

h*: 8.79

Kinetic Energy

We = 41

Radial direction

Scaling

Time of maximum crater depth

Maximum crater depth

h*: 8.79

Outlook

- Calculation of surface energy and viscous dissipation to further validate our arguments
- Scaling laws for different weber number developed on the basis of inertia, capillarity and gravity.
- The effect of pool depth than can further be studied for full parameter space of velocity.

Acknowledgments

I would like to acknowledge Basilisk Scholarship and funding from Xi'an Jiaotong University to cover expenses of my Paris trip to attend the Basilisk/Gerris Users' Meeting 2019.

Thank you for your attention! Any questions, comments, or suggestions are welcome.