MULTISCALE MODELING OF VISCOUS FLOW IN A POROUS MEDIUM. BASILISK

 \bigcirc

Skolkovo Institute of Science and Technology

Center for Design, Manufacturing and Materials

PhD student: Evgenii L. Sharaborin Supervisor: Prof. Aslan R. Kasimov

Paris, June 2019

Outline

- 1. Background & Motivation
- 2. Formulation of the Problem
- 3. Basilisk. Numerical Methods.
- 4. Results
- 5. Computational & Modeling Challenges
- 6. Conclusion

Background & Motivation

Reinforced matrix (Carbon, Manufacturing problems glass, aramid, polymer

Liquid Composite Molding (LCM)

Resin Transfer Molding

X-Ray CT Scanning

Sizes	
$10 - 1000 \mu m$	-bubble
5 — 25µm	-fibers
1 <i>mm</i>	-tows
1cm - m	-part

Stress concentration

Random defects poor tensile resistance

• Cracks >5% of bubbles => inappropriate for practical use

Simulation problems

1. Vast range of scales:

- 2.Multiphase (liquid resin, air bubbles)
- 3.Capillary/surface interaction effects
- 4.Polymerization process => Variable rheology

5.Complex topology of a fiber matrix

Purpose & Steps

Purpose

Develop a computational technology for **predictive modeling** and **simulation** of multi-scale resin flow through fiber reinforced material

Modeling levels

- Micro
- •Meso
- •Macro

Modeling approaches

Scale	Domain size	Model	Medium
Micro	10µm — 10mm	Stokes surface tension	Solid
Meso	Meso 1-10mm	Stokes	Open gap
	Darcy	Porous	
Macro	>0.1m	Darcy	Porous

• Micro model¹

• Macro model

¹D. Durville, arxiv, 2012 ²David Mollenhauer et al., 2009 ³<u>http://velozephyr.com/carbon-fiber</u> ^{4/22}

Void Formation in LCM. Models

Formation of 3 scales of voids

Capillary number

Void scale	Location
Micro	Inside tows
Meso	Between tows
Macro	Dry spots

Reason

• competition of the hydrodynamic force and capillary force

 $Ca \gg 1$

 $Ca \ll 1$

M. Mehdikhani, L. Gorbatikh, S. Lomovet, SICOMP28 Conference, 2017

Parameters for Woven Fabric Selection

- weave pattern
- yarn weight
- thread count
- fabric finish
- stability
- pliability

Situation Now

- Mechanical properties neglecting porosity
- Big errors

Suggestion

- 1. Choose weaving geometry
- 2. Calculate resin flow through it
- 3. Compute mechanical properties for the resulting material with porous

Questions

- How do weave patterns affect porosity?
- What is distribution of bubbles?

Liquid Composite Molding

- Epoxy flows slowly: velocity is 0.1–1 mm/s
- High viscosity: starts from 100 mPa·s

Assumptions

- Stokes flow
- Non-cavitation regime

50

0

Incompressible flow

Solidification

Liquid

150

200

250

100

Solid

Biresin® CR83 Data sheet

General Problem Formulation. Micromodel

$$\nabla \cdot \mathbf{u} = 0$$
Incompressible flow $\partial_t \rho \mathbf{u} = -\nabla p + \nabla \cdot (2\mu \overline{D}) + \sigma \kappa \nabla \varphi_r$ Momentum $\partial_t \phi_r + \mathbf{u} \cdot \nabla \varphi_r = 0$ Phase tracerpolymerization $\rho C_p (\partial_t T + \mathbf{u} \nabla T) = \nabla \cdot \kappa \nabla T + H_{tr} \rho_r \phi_r \frac{D\alpha}{Dt}$ Heat transfer and chemical reactions $\frac{D\alpha}{Dt} = \partial_t \alpha + \mathbf{u} \nabla \alpha = A(1 - \alpha)^n \exp(-E/RT)$ Polymerization. Degree of cure $\varphi_b + \varphi_r + \varphi_f = 1$ Identity $f = \phi_f f_f + \varphi_r f_r + (1 - \varphi_f - \varphi_r) f_b$ Homogenized mixture $f = (\rho, C_p, \kappa)$ for material values

K σ φ_r φ_b φ_f

- curvature surface tension coeff. volume fraction of resin volume fraction of bubbles volume fraction of fibres

H(t) heat generated up to t

Current Problem Formulation. Micromodel

Boundary and Initial Conditions

Periodic

The Nearest Goal

$$Ca = \frac{\mu V}{\gamma \cos \theta} \qquad \qquad Re = \frac{VL\rho}{\mu}$$

I need to find dependency of porosity $\varphi(Re, Ca)$

Research Open Source Code Basilisk

My requirements

- Adaptive grid
- Flexible in adding equations
- Two-phase
- Surface tension
- Set complex geometry
- Free of charge

Results

- Saturated flow through cylinders
- Non-saturated flow through cylinders
- Non-saturated flow through staggered cylinders

• BASILISK: navier-stokes + surface-tension + VOF + Popinet's trick

Initial condition

Grid

interface of bubbles and obstacles

$$\frac{\rho_r}{\rho_b} = 1000 \frac{\mu_r}{\mu_b} = 100 Re = \frac{\mu_0 L \rho_r}{\mu_r} = 100 Ca = \frac{\mu_r \mu_0}{\sigma_0} = 0.1\epsilon = 10^{-2} CFL = 0.8 Level_{max} = 12$$

Wetting solids

4*L* is channel width ϵ is threshold parameter u_0 is inflow velocity *CFL* is stability parameter

Grid

interface of bubbles and obstacles

$$\frac{\rho_r}{\rho_b} = 1000 \frac{\mu_r}{\mu_b} = 100Re = \frac{u_0 L \rho_r}{\mu_r} = 100Ca = \frac{\mu_r u_0}{\sigma_0} = 0.1\epsilon = 10^{-2}CFL = 0.8Level_{max} = 12$$

Wetting solids

4*L* is channel width ϵ is threshold parameter u_0 is inflow velocity *CFL* is stability parameter

Initial condition

Grid

interface of bubbles and obstacles

$$\frac{\rho_r}{\rho_b} = 1000 \frac{\mu_r}{\mu_b} = 100Re = \frac{u_0 L \rho_r}{\mu_r} = 100Ca = \frac{\mu_r u_0}{\sigma_0} = 0.1\epsilon = 10^{-2}CFL = 0.8Level_{max} = 12$$
No-Wetting solids
$$4L \quad \text{is channel width} \quad \epsilon \quad \text{is threshold parameter}$$

 u_0 is inflow velocity *CFL* is stability parameter

Grid

interface of bubbles and obstacles

$$\frac{\rho_r}{\rho_b} = 1000 \frac{\mu_r}{\mu_b} = 100Re = \frac{u_0 L \rho_r}{\mu_r} = 100Ca = \frac{\mu_r u_0}{\sigma_0} = 0.1\epsilon = 10^{-2}CFL = 0.8Level_{max} = 12$$
No-Wetting solids
$$4L \quad \text{is channel width} \quad \epsilon \quad \text{is threshold parameter}$$

 u_0 is inflow velocity *CFL* is stability parameter

Saturated Flow With Through Staggered Cylinders. No-Wetting Solids

Initial condition

Grid

interface of bubbles and obstacles

$$\frac{\rho_r}{\rho_b} = 1000 \frac{\mu_r}{\mu_b} = 100Re = \frac{u_0 L \rho_r}{\mu_r} = 100Ca = \frac{\mu_r u_0}{\sigma_0} = 0.1\epsilon = 10^{-2}CFL = 0.8Level_{max} = 12$$
No-Wetting solids
$$4L \quad \text{is channel width} \quad \epsilon \quad \text{is threshold parameter}$$

$$u_0 \quad \text{is inflow velocity} \quad CFL \text{ is stability parameter}$$

Saturated Flow With Through Staggered Cylinders. No-Wetting Solids

Grid

interface of bubbles and obstacles

$$\frac{\rho_r}{\rho_b} = 1000 \frac{\mu_r}{\mu_b} = 100 Re = \frac{u_0 L \rho_r}{\mu_r} = 100 Ca = \frac{\mu_r u_0}{\sigma_0} = 0.1\epsilon = 10^{-2} CFL = 0.8 Level_{max} = 12$$
No-Wetting solids
$$4L \quad \text{is channel width} \quad \epsilon \quad \text{is threshold parameter}$$

$$u_0 \quad \text{is inflow velocity} \quad CFL \text{ is stability parameter}$$

Saturated Flow With Through Straight & Staggered Cylinders. Perfect Wetting

$$\frac{\rho_r}{\rho_b} = 1000 \frac{\mu_r}{\mu_b} = 100 Re = \frac{u_0 L \rho_r}{\mu_r} = 100 Ca = \frac{\mu_r u_0}{\sigma_0} = 0.1\epsilon = 10^{-2} CFL = 0.8 Level_{max} = 10$$
Wetting solids
$$4L \text{ is channel width } \epsilon \text{ is threshold parameter}$$

 u_0 is inflow velocity *CFL* is stability parameter

Computational Aspects and Challenges

- Complex geometry treatment
 - mask
 - embedded boundaries
 - Popinet's trick $u = u_*(1 \varphi_f)$

Methods	Advantages	Problem
Mask	User friendly Easy to set	Single
Embedded boundaries	MPI	Time consuming & no for 2 phase flow No contact
Popinet's trick	MPI Very cheap	Solid is a little bit porous

Conclusion and Future Work

- A two-phase model (gas-liquid) of resin through a porous medium, surface tension
- The results show the dynamics of viscous **saturated** and **unsaturated** flows and bubble formation
- Coupling of incompressible and compressible flows
- In practice, the dependence of the effect of wettability and viscosity on temperature is highly nonlinear, which will greatly affect the transfer and the appearance of bubbles
- A study of the role of wettability and temperature in these processes is the topic of our future research

Thank you for you attention!

Acknowledgements

I would like to express my sincere gratitude to scientific consultant Dr. Oleg Vasilev, Oleg Rogozin and Basilisk community for their patience, motivation, and immense knowledge.

Contacts

- e-mail: <u>Evgenii.Sharaborin@skoltech.ru</u>
- Tel: +7 925 533 22 58