sandbox/acastillo/filaments/filaments.c

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    56
    57
    58
    59
    60
    61
    62
    63
    64
    65
    66
    67
    68
    69
    70
    71
    72
    73
    74
    75
    76
    77
    78
    79
    80
    81
    82
    83
    84
    85
    86
    87
    88
    89
    90
    91
    92
    93
    94
    95
    96
    97
    98
    99
    100
    101
    102
    103
    104
    105
    106
    107
    108
    109
    110
    111
    112
    113
    114
    115
    116
    117
    118
    119
    120
    121
    122
    123
    124
    125
    126
    127
    128
    129
    130
    131
    132
    133
    134
    135
    136
    137
    138
    139
    140
    141
    142
    143
    144
    145
    146
    147
    148
    149
    150
    151
    152
    153
    154
    155
    156
    157
    158
    159
    160
    161
    162
    163
    164
    165
    166
    167
    168
    169
    170
    171
    172
    173
    174
    175
    176
    177
    178
    179
    180
    181
    182
    183
    184
    185
    186
    187
    188
    189
    190
    191
    192
    193
    194
    195
    196
    197
    198
    199
    200
    201
    202
    203
    204
    205
    206
    207
    208
    209
    210
    211
    212
    213
    214
    215
    216
    217
    218
    219
    220
    221
    222
    223
    224
    225
    226
    227
    228
    229
    230
    
    #include "filaments.h"
    
    
    double test_vorticity_filament0(coord pcar, int n_seg, double a, double* t0, coord* c, coord* tvec, coord* nvec, coord* bvec, int period){
      /* Compute the local coordinates required for the vorticity field.
      Each position P(x,y,z) is projected into the local Frenet-Serret frame to
      obtain a set of local coordinates, such that:
      i)  (P - X . T = 0
      ii) (P - X) . N = x_n
      ii) (P - X) . B = x_b
      This requires finding the value of X(t0) along each space curve that verifies
      i) through a minization process.
      Then, we use the local coordinates (x_n, x_b) to define a radial coordinate
      rho required to compute the vorticity of a Lamb-Oseen vortex as
      omega = Gamma/(pi a²) exp(-rho²/a²) . T
      where Gamma is the circulation and a the core size.
      */
    
      /* First, we approximate the minimal distance between the point P and each
      segment of the curve. */
      double dmin = 1e30, tmin=0;
      double rho_loc;
      for (int i = 0; i < n_seg; i++){
        if (vecdist2(pcar, c[i]) < dmin){
          dmin = vecdist2(pcar, c[i]);
          tmin = t0[i];
        }
      }
    
      if (period != 0)
        tmin = fmod(tmin + period*2*pi, period*2*pi);
    
      // If P is close to the vortex, we refine the initial guess
      coord ploc, ccar, frenet[3];
      double tq = frenet_projection_min(n_seg, a, t0, c, tvec, nvec, bvec, pcar, tmin);
    
      ccar = gsl_interp1d( n_seg, t0, c, tq);
    
      // Then, compute the local coordinates for the vortex
      frenet[0] = gsl_interp1d( n_seg, t0, tvec, tq);
      frenet[1] = gsl_interp1d( n_seg, t0, nvec, tq);
      frenet[2] = gsl_interp1d( n_seg, t0, bvec, tq);
    
      ploc.x = vecdot(vecdiff(pcar, ccar), frenet[0]);
      ploc.y = vecdot(vecdiff(pcar, ccar), frenet[1]);
      ploc.z = vecdot(vecdiff(pcar, ccar), frenet[2]);
      rho_loc = sqrt(vecdot(ploc, ploc));
    
      return rho_loc;
    }
    
    
    coord test_vorticity_filament1(coord pcar, int n_seg, double a, double* t0, coord* c, coord* tvec, coord* nvec, coord* bvec, int period){
      double dmin = 1e30, tmin=0;
      for (int i = 0; i < n_seg; i++){
        if (vecdist2(pcar, c[i]) < dmin){
          dmin = vecdist2(pcar, c[i]);
          tmin = t0[i];
        }
      }
    
      if (period != 0)
        tmin = fmod(tmin + period*2*pi, period*2*pi);
    
      // If P is close to the vortex, we refine the initial guess
      coord ccar, frenet[1];
      double tq = frenet_projection_min(n_seg, a, t0, c, tvec, nvec, bvec, pcar, tmin);
    
      ccar = gsl_interp1d( n_seg, t0, c, tq);
    
      // Then, compute the local coordinates for the vortex
      frenet[0] = gsl_interp1d( n_seg, t0, tvec, tq);
    
      return (coord) {frenet[0].x, frenet[0].y, frenet[0].z};
    }
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    coord get_vorticity_filament(coord pcar, int n_seg, double a, double* t0, coord* c, coord* tvec, coord* nvec, coord* bvec, int period){
      /* Compute the local coordinates required for the vorticity field.
      Each position P(x,y,z) is projected into the local Frenet-Serret frame to
      obtain a set of local coordinates, such that:
      i)  (P - X . T = 0
      ii) (P - X) . N = x_n
      ii) (P - X) . B = x_b
      This requires finding the value of X(t0) along each space curve that verifies
      i) through a minization process.
      Then, we use the local coordinates (x_n, x_b) to define a radial coordinate
      rho required to compute the vorticity of a Lamb-Oseen vortex as
      omega = Gamma/(pi a²) exp(-rho²/a²) . T
      where Gamma is the circulation and a the core size.
      */
    
      /* First, we approximate the minimal distance between the point P and each
      segment of the curve. */
      coord omega;
      double dmin = 1e30, tmin=0;
      double rho_loc, omega_mag;
      for (int i = 0; i < n_seg; i++){
        if (vecdist2(pcar, c[i]) < dmin){
          dmin = vecdist2(pcar, c[i]);
          tmin = t0[i];
        }
      }
    
      if (period != 0)
        tmin = fmod(tmin + period*2*pi, period*2*pi);
    
      if (dmin < L0){
        // If P is close to the vortex, we refine the initial guess
        coord ploc, ccar, frenet[3];
        double tq = frenet_projection_min(n_seg, a, t0, c, tvec, nvec, bvec, pcar, tmin);
    
        ccar = gsl_interp1d( n_seg, t0, c, tq);
    
        // Then, compute the local coordinates for the vortex
        frenet[0] = gsl_interp1d( n_seg, t0, tvec, tq);
        frenet[1] = gsl_interp1d( n_seg, t0, nvec, tq);
        frenet[2] = gsl_interp1d( n_seg, t0, bvec, tq);
    
        ploc.x = vecdot(vecdiff(pcar, ccar), frenet[0]);
        ploc.y = vecdot(vecdiff(pcar, ccar), frenet[1]);
        ploc.z = vecdot(vecdiff(pcar, ccar), frenet[2]);
        rho_loc = sqrt(vecdot(ploc, ploc));
    
        // Last, we compute the vorticity for the vortex 1
        omega_mag = exp(-sq(rho_loc)/sq(a))/(pi*sq(a));
        omega = (coord) {omega_mag * frenet[0].x, omega_mag * frenet[0].y, omega_mag * frenet[0].z};
      }
      else {
        // Otherwise, if the point is too far, we set the vorticity to zero.
        foreach_dimension()
          omega.x = 0;
      }
      return omega;
    }
    
    
    
    
    
    coord get_vorticity_filament2(double Gamma, double Uc, coord pcar, int n_seg, double a, double* t0, coord* c, coord* tvec, coord* nvec, coord* bvec, int period){
      /* Compute the local coordinates required for the vorticity field.
      Each position P(x,y,z) is projected into the local Frenet-Serret frame to
      obtain a set of local coordinates, such that:
      i)  (P - X . T = 0
      ii) (P - X) . N = x_n
      ii) (P - X) . B = x_b
      This requires finding the value of X(t0) along each space curve that verifies
      i) through a minization process.
      Then, we use the local coordinates (x_n, x_b) to define a radial coordinate
      rho required to compute the vorticity of a Lamb-Oseen vortex as
      omega = Gamma/(pi a²) exp(-rho²/a²) . T + 2 Uc/a (rho/a) exp(-rho²/a²)
      where Gamma is the circulation and a the core size and Uc is the
      axial centerline velocity.
      */
    
      /* First, we approximate the minimal distance between the point P and each
      segment of the curve. */
      coord omega;
      double dmin = 1e30, tmin=0;
      double rho_loc, omega_mag;
      for (int i = 0; i < n_seg; i++){
        if (vecdist2(pcar, c[i]) < dmin){
          dmin = vecdist2(pcar, c[i]);
          tmin = t0[i];
        }
      }
    
      if (period != 0)
        tmin = fmod(tmin + period*2*pi, period*2*pi);
    
      if (dmin < L0){
        // If P is close to the vortex, we refine the initial guess
        coord ploc, ccar, frenet[3];
        double tq = frenet_projection_min(n_seg, a, t0, c, tvec, nvec, bvec, pcar, tmin);
    
        ccar = gsl_interp1d( n_seg, t0, c, tq);
    
        // Then, compute the local coordinates for the vortex
        frenet[0] = gsl_interp1d( n_seg, t0, tvec, tq);
        frenet[1] = gsl_interp1d( n_seg, t0, nvec, tq);
        frenet[2] = gsl_interp1d( n_seg, t0, bvec, tq);
    
        ploc.x = vecdot(vecdiff(pcar, ccar), frenet[0]);
        ploc.y = vecdot(vecdiff(pcar, ccar), frenet[1]);
        ploc.z = vecdot(vecdiff(pcar, ccar), frenet[2]);
        rho_loc = sqrt(vecdot(ploc, ploc));
    
        // Last, we compute the vorticity for the vortex 1
        omega_mag = exp(-sq(rho_loc)/sq(a))/(sq(a));
        omega.x = omega_mag * (Gamma/pi * frenet[0].x + (2.0 * Uc) * (-ploc.z * frenet[1].x + ploc.y * frenet[2].x));
        omega.y = omega_mag * (Gamma/pi * frenet[0].y + (2.0 * Uc) * (-ploc.z * frenet[1].y + ploc.y * frenet[2].y));
        omega.z = omega_mag * (Gamma/pi * frenet[0].z + (2.0 * Uc) * (-ploc.z * frenet[1].z + ploc.y * frenet[2].z));
      }
      else {
        // Otherwise, if the point is too far, we set the vorticity to zero.
        foreach_dimension()
          omega.x = 0;
      }
      return omega;
    }