/** # The hydrostatic multilayer solver for free-surface flows The theoretical basis and main algorithms for this solver are described in [Popinet, 2020](/Bibliography#popinet2020). Note however that this version of the solver is more recent and may not match the details of Popinet, 2020. The system of $n$ layers of incompressible fluid pictured below is modelled as the set of (hydrostatic) equations: $$ \begin{aligned} \partial_t h_k + \mathbf{{\nabla}} \cdot \left( h \mathbf{u} \right)_k & = 0,\\ \partial_t \left( h \mathbf{u} \right)_k + \mathbf{{\nabla}} \cdot \left( h \mathbf{u} \mathbf{u} \right)_k & = - gh_k \mathbf{{\nabla}} (\eta) \end{aligned} $$ with $\mathbf{u}_k$ the velocity vector, $h_k$ the layer thickness, $g$ the acceleration of gravity and $\eta$ the free-surface height. The non-hydrostatic pressure $\phi_k$ and vertical velocity $w_k$ can be added using [the non-hydrostatic extension](nh.h). See also the [general introduction](README). ![Definition of the $n$ layers.](../figures/layers.svg){ width="60%" } ## Fields and parameters The `zb` and `eta` fields define the bathymetry and free-surface height. The `h` and `u` fields define the layer thicknesses and velocities. The acceleration of gravity is `G` and `dry` controls the minimum layer thickness. The hydrostatic CFL criterion is defined by `CFL_H`. It is set to a very large value by default, but will be tuned either by the user or by the default solver settings (typically depending on whether time integration is explicit or implicit). The `gradient` pointer gives the function used for limiting. `tracers` is a list of tracers for each layer. By default it contains only the components of velocity (unless `linearised` is set to `true` in which case the tracers list is empty). */ #define BGHOSTS 2 #define LAYERS 1 #include "utils.h" scalar zb[], eta, h; vector u; double G = 1., dry = 1e-12, CFL_H = 1e40; double (* gradient) (double, double, double) = minmod2; scalar * tracers = NULL; bool linearised = false; /** ## Setup We first define refinement and restriction functions for the free-surface height `eta` which is just the sum of all layer thicknesses and of bathymetry. */ #if TREE static void refine_eta (Point point, scalar eta) { foreach_child() { eta[] = zb[]; foreach_layer() eta[] += h[]; } } static void restriction_eta (Point point, scalar eta) { eta[] = zb[]; foreach_layer() eta[] += h[]; } #endif // TREE /** The allocation of fields for each layer is split in two parts, because we need to make sure that the layer thicknesses and $\eta$ are allocated first (in the case where other layer fields are added, for example for the [non-hydrostatic extension](nh.h)). */ event defaults0 (i = 0) { assert (nl > 0); h = new scalar[nl]; h.gradient = gradient; #if TREE h.refine = h.prolongation = refine_linear; h.restriction = restriction_volume_average; #endif eta = new scalar; reset ({h, zb}, 0.); /** We set the proper gradient and refinement/restriction functions. */ zb.gradient = gradient; eta.gradient = gradient; #if TREE zb.refine = zb.prolongation = refine_linear; zb.restriction = restriction_volume_average; eta.prolongation = refine_linear; eta.refine = refine_eta; eta.restriction = restriction_eta; #endif // TREE } #include "run.h" /** Other fields, such as $\mathbf{u}_k$ here, are added by this event. */ event defaults (i = 0) { /** The (velocity) CFL is limited by the unsplit advection scheme, so is dependent on the dimension. The (gravity wave) CFL is set to 1/2 (if not already set by the user). */ CFL = 1./(2.*dimension); if (CFL_H == 1e40) CFL_H = 0.5 [0]; u = new vector[nl]; reset ({u}, 0.); if (!linearised) foreach_dimension() tracers = list_append (tracers, u.x); /** The gradient and prolongation/restriction functions are set for all tracer fields. */ for (scalar s in tracers) { s.gradient = gradient; #if TREE s.refine = s.prolongation = refine_linear; s.restriction = restriction_volume_average; #endif } /** We setup the default display. */ display ("squares (color = 'eta > zb ? eta : nodata', spread = -1);"); } /** After user initialisation, we define the free-surface height $\eta$. */ event init (i = 0) { foreach() { eta[] = zb[]; foreach_layer() eta[] += h[]; dimensional (h[] == Delta); } } /** The maximum timestep `dtmax` can be used to impose additional stability conditions. */ double dtmax; event set_dtmax (i++,last) dtmax = DT; /** The macro below can be overloaded to define the barotropic acceleration. By default it is just the slope of the free-surface times gravity. */ #define gmetric(i) (2.*fm.x[i]/(cm[i] + cm[i-1])) #ifndef a_baro # define a_baro(eta, i) (G*gmetric(i)*(eta[i-1] - eta[i])/Delta) #endif /** ## Computation of face values At each timestep, temporary face fields are defined for the fluxes $(h \mathbf{u})^{n+1/2}$, face height $h_f^{n+1/2}$ and height-weighted face accelerations $(ha)^{n+1/2}$. */ static bool hydrostatic = true; face vector hu, hf, ha; event face_fields (i++, last) { hu = new face vector[nl]; hf = new face vector[nl]; ha = new face vector[nl]; /** The (CFL-limited) timestep is also computed by this function. A difficulty is that the prediction step below also requires an estimated timestep (the `pdt` variable below). The timestep at the previous iteration is used as estimate. For the initial timestep a "sufficiently small" value is used. */ static double pdt = 1e-6; foreach_face (reduction (min:dtmax)) { double ax = a_baro (eta, 0); double H = 0., um = 0.; foreach_layer() { /** The face velocity is computed as the height-weighted average of the cell velocities. */ double hl = h[-1] > dry ? h[-1] : 0.; double hr = h[] > dry ? h[] : 0.; hu.x[] = hl > 0. || hr > 0. ? (hl*u.x[-1] + hr*u.x[])/(hl + hr) : 0.; /** The face height is computed using a variant of the [BCG](/src/bcg.h) scheme. */ double hff, un = pdt*(hu.x[] + pdt*ax)/Delta, a = sign(un); int i = - (a + 1.)/2.; double g = h.gradient ? h.gradient (h[i-1], h[i], h[i+1])/Delta : (h[i+1] - h[i-1])/(2.*Delta); hff = h[i] + a*(1. - a*un)*g*Delta/2.; hf.x[] = fm.x[]*hff; /** The maximum velocity is stored and the flux and height-weighted accelerations are computed. */ if (fabs(hu.x[]) > um) um = fabs(hu.x[]); hu.x[] *= hf.x[]; ha.x[] = hf.x[]*ax; H += hff; } /** The maximum timestep is computed using the total depth `H` and the advection and gravity wave CFL criteria. The gravity wave speed takes dispersion into account in the non-hydrostatic case. */ if (H > dry) { double c = um/CFL + sqrt(G*(hydrostatic ? H : Delta*tanh(H/Delta)))/CFL_H; if (c > 0.) { double dt = min(cm[], cm[-1])*Delta/(c*fm.x[]); if (dt < dtmax) dtmax = dt; } } } /** The timestep is computed, taking into account the timing of events, and also stored in `pdt` (see comment above). */ pdt = dt = dtnext (dtmax); } /** ## Advection and diffusion The function below approximates the advection terms using estimates of the face fluxes $h\mathbf{u}$ and face heights $h_f$. */ void advect (scalar * tracers, face vector hu, face vector hf, double dt) { /** The fluxes are first limited according to the CFL condition to ensure strict positivity of the layer heights. This step is necessary due to the approximate estimation of the CFL condition in the timestep calculation above. */ foreach_face() foreach_layer() { double hul = hu.x[]; if (hul*dt/(Delta*cm[-1]) > CFL*h[-1]) hul = CFL*h[-1]*Delta*cm[-1]/dt; else if (- hul*dt/(Delta*cm[]) > CFL*h[]) hul = - CFL*h[]*Delta*cm[]/dt; /** In the case where the flux is limited, and for multiple layers, an attempt is made to conserve the total barotropic flux by merging the flux difference with the flux in the layer just above. This allows to maintain an accurate evolution for the free-surface height $\eta$. */ if (hul != hu.x[]) { if (point.l < nl - 1) hu.x[0,0,1] += hu.x[] - hul; else if (nl > 1) fprintf (stderr, "warning: could not conserve barotropic flux " "at %g,%g,%d\n", x, y, point.l); hu.x[] = hul; } } face vector flux[]; foreach_layer() { /** We compute the flux $(shu)_{i+1/2,k}$ for each tracer $s$, using a variant of the BCG scheme. */ for (scalar s in tracers) { foreach_face() { double un = dt*hu.x[]/((hf.x[] + dry)*Delta), a = sign(un); int i = -(a + 1.)/2.; double g = s.gradient ? s.gradient (s[i-1], s[i], s[i+1])/Delta : (s[i+1] - s[i-1])/(2.*Delta); double s2 = s[i] + a*(1. - a*un)*g*Delta/2.; #if dimension > 1 if (hf.y[i] + hf.y[i,1] > dry) { double vn = (hu.y[i] + hu.y[i,1])/(hf.y[i] + hf.y[i,1]); double syy = (s.gradient ? s.gradient (s[i,-1], s[i], s[i,1]) : vn < 0. ? s[i,1] - s[i] : s[i] - s[i,-1]); s2 -= dt*vn*syy/(2.*Delta); } #endif // dimension > 1 flux.x[] = s2*hu.x[]; } /** We compute $(hs)^\star_i = (hs)^n_i + \Delta t [(shu)_{i+1/2} -(shu)_{i-1/2}]/\Delta$. */ foreach() { s[] *= h[]; foreach_dimension() s[] += dt*(flux.x[] - flux.x[1])/(Delta*cm[]); } } /** We then obtain $h^{n+1}$ and $s^{n+1}$ using $$ \begin{aligned} h_i^{n+1} & = h_i^n + \Delta t \frac{(hu)_{i+1/2} - (hu)_{i-1/2}}{\Delta},\\ s_i^{n+1} & = \frac{(hs)^\star_i}{h_i^{n+1}} \end{aligned} $$ */ foreach() { double h1 = h[]; foreach_dimension() h1 += dt*(hu.x[] - hu.x[1])/(Delta*cm[]); if (h1 < - dry) fprintf (stderr, "warning: h1 = %g < - 1e-12 at %g,%g,%d,%g\n", h1, x, y, _layer, t); h[] = fmax(h1, 0.); if (h1 < dry) { for (scalar f in tracers) f[] = 0.; } else for (scalar f in tracers) f[] /= h1; } } } /** This is where the 'two-step advection' of the [implicit scheme](implicit.h) plugs itself (nothing is done for the explicit scheme). */ event half_advection (i++, last); /** Vertical diffusion (including viscosity) is added by this code. */ #include "diffusion.h" /** ## Accelerations Acceleration terms are added here. In the simplest case, this is only the pressure gradient due to the free-surface slope, as computed in [face_fields](#face_fields). */ event acceleration (i++, last); event pressure (i++, last) { /** The acceleration is applied to the face fluxes... */ foreach_face() foreach_layer() hu.x[] += dt*ha.x[]; /** ... and to the centered velocity field, using height-weighting. */ foreach() foreach_layer() { foreach_dimension() u.x[] += dt*(ha.x[] + ha.x[1])/(hf.x[] + hf.x[1] + dry); #if dimension == 2 // metric terms double dmdl = (fm.x[1,0] - fm.x[])/(cm[]*Delta); double dmdt = (fm.y[0,1] - fm.y[])/(cm[]*Delta); double ux = u.x[], uy = u.y[]; double fG = uy*dmdl - ux*dmdt; u.x[] += dt*fG*uy; u.y[] -= dt*fG*ux; #endif // dimension == 2 } delete ((scalar *){ha}); /** The resulting fluxes are used to advect both tracers and layer heights. */ advect (tracers, hu, hf, dt); } /** Finally the free-surface height $\eta$ is updated and the boundary conditions are applied. */ event update_eta (i++, last) { delete ((scalar *){hu, hf}); foreach() { double etap = zb[]; foreach_layer() etap += h[]; eta[] = etap; } } /** ## Vertical remapping and mesh adaptation [Vertical remapping](remap.h) is applied here if necessary. */ event remap (i++, last); #if TREE event adapt (i++,last); #endif /** ## Cleanup The fields and lists allocated in [`defaults()`](#defaults0) above must be freed at the end of the run. */ event cleanup (t = end, last) { delete ({eta, h, u}); free (tracers), tracers = NULL; } /** # Horizontal pressure gradient The macro below computes the horizontal pressure gradient $$ pg_k = - \mathbf{{\nabla}} (h \phi)_k + \left[ \phi \mathbf{{\nabla}} z \right]_k $$ on the faces of each layer. The slope of the layer interfaces $\mathbf{{\nabla}} z_{k+1/2}$ in the second-term is bounded by `max_slope` (by default 30 degrees). */ double max_slope = 0.577350269189626 [0]; // = tan(30.*pi/180.) #define slope_limited(dz) (fabs(dz) < max_slope ? (dz) : \ ((dz) > 0. ? max_slope : - max_slope)) #define hpg(pg,phi,i,code) do { \ double dz = zb[i] - zb[i-1]; \ foreach_layer() { \ double pg = 0.; \ if (h[i] + h[i-1] > dry) { \ double s = Delta*slope_limited(dz/Delta); \ pg = (h[i-1] - s)*phi[i-1] - (h[i] + s)*phi[i]; \ if (point.l < nl - 1) { \ double s = Delta*slope_limited((dz + h[i] - h[i-1])/Delta); \ pg += (h[i-1] + s)*phi[i-1,0,1] - (h[i] - s)*phi[i,0,1]; \ } \ pg *= gmetric(i)*hf.x[i]/(Delta*(h[i] + h[i-1])); \ } code; \ dz += h[i] - h[i-1]; \ } \ } while (0) /** # Hydrostatic vertical velocity For the hydrostatic solver, the vertical velocity is not defined by default since it is usually not required. The function below can be applied to compute it using the (diagnostic) incompressibility condition $$ \mathbf{{\nabla}} \cdot \left( h \mathbf{u} \right)_k + \left[ w - \mathbf{u} \cdot \mathbf{{\nabla}} (z) \right]_k = 0 $$ */ void vertical_velocity (scalar w, face vector hu, face vector hf) { foreach() { double dz = zb[1] - zb[-1]; double wm = 0.; foreach_layer() { w[] = wm + (hu.x[] + hu.x[1])/(hf.x[] + hf.x[1] + dry)* (dz + h[1] - h[-1])/(2.*Delta); if (point.l > 0) foreach_dimension() w[] -= (hu.x[0,0,-1] + hu.x[1,0,-1]) /(hf.x[0,0,-1] + hf.x[1,0,-1] + dry)*dz/(2.*Delta); foreach_dimension() w[] -= (hu.x[1] - hu.x[])/Delta; dz += h[1] - h[-1], wm = w[]; } } } /** # "Radiation" boundary conditions This can be used to implement open boundary conditions at low [Froude numbers](http://en.wikipedia.org/wiki/Froude_number). The idea is to set the velocity normal to the boundary so that the water level relaxes towards its desired value (*ref*). */ double _radiation (Point point, double ref, scalar s) { double H = 0.; foreach_layer() H += h[]; #if 0 return H > dry ? sqrt(G/H)*(zb[] + H - ref) : 0.; #else return sqrt (G*max(H,0.)) - sqrt(G*max(ref - zb[], 0.)); #endif } #define radiation(ref) _radiation(point, ref, _s) /** # Conservation of water surface elevation We re-use some generic functions. */ #include "elevation.h" /** But we need to re-define the water depth refinement function. */ #if TREE static void refine_layered_elevation (Point point, scalar h) { /** We first check whether we are dealing with "shallow cells". */ bool shallow = zb[] > default_sea_level; foreach_child() if (zb[] > default_sea_level) { shallow = true; break; } /** If we do, refined cells are just set to the default sea level. */ if (shallow) foreach_child() h[] = max(0., default_sea_level - zb[]); /** Otherwise, we use the surface elevation of the parent cells to reconstruct the water depth of the children cells. */ else { double eta = zb[] + h[]; // water surface elevation coord g; // gradient of eta if (gradient) foreach_dimension() g.x = gradient (zb[-1] + h[-1], eta, zb[1] + h[1])/4.; else foreach_dimension() g.x = (zb[1] + h[1] - zb[-1] - h[-1])/(2.*Delta); // reconstruct water depth h from eta and zb foreach_child() { double etac = eta; foreach_dimension() etac += g.x*child.x; h[] = max(0., etac - zb[]); } } } /** We overload the `conserve_elevation()` function. */ void conserve_layered_elevation (void) { h.refine = refine_layered_elevation; h.prolongation = prolongation_elevation; h.restriction = restriction_elevation; h.dirty = true; // boundary conditions need to be updated } #define conserve_elevation() conserve_layered_elevation() #endif // TREE #include "gauges.h" #if dimension == 2 /** # Fluxes through sections These functions are typically used to compute fluxes (i.e. flow rates) through cross-sections defined by two endpoints (i.e. segments). Note that the orientation of the segment is taken into account when computing the flux i.e the positive normal direction to the segment is to the "left" when looking from the start to the end. This can be expressed mathematically as: $$ \text{flux}[k] = \int_A^B h_k\mathbf{u}_k\cdot\mathbf{n}dl $$ with $A$ and $B$ the endpoints of the segment, $k$ the layer index, $\mathbf{n}$ the oriented segment unit normal and $dl$ the elementary length. The function returns the sum (over $k$) of all the fluxes. */ double segment_flux (coord segment[2], double * flux, scalar h, vector u) { coord m = {segment[0].y - segment[1].y, segment[1].x - segment[0].x}; normalize (&m); for (int l = 0; l < nl; l++) flux[l] = 0.; foreach_segment (segment, p) { double dl = 0.; foreach_dimension() { double dp = (p[1].x - p[0].x)*Delta/Delta_x*(fm.y[] + fm.y[0,1])/2.; dl += sq(dp); } dl = sqrt (dl); for (int i = 0; i < 2; i++) { coord a = p[i]; foreach_layer() flux[point.l] += dl/2.* interpolate_linear (point, h, a.x, a.y, 0.)* (m.x*interpolate_linear (point, u.x, a.x, a.y, 0.) + m.y*interpolate_linear (point, u.y, a.x, a.y, 0.)); } } // reduction #if _MPI MPI_Allreduce (MPI_IN_PLACE, flux, nl, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD); #endif double tot = 0.; for (int l = 0; l < nl; l++) tot += flux[l]; return tot; } /** A NULL-terminated array of *Flux* structures passed to *output_fluxes()* will create a file (called *name*) for each flux. Each time *output_fluxes()* is called a line will be appended to the file. The line contains the time, the total flux and the value of the flux for each $h$, $u$ pair in the layer. The *desc* field can be filled with a longer description of the flux. */ typedef struct { char * name; coord s[2]; char * desc; FILE * fp; } Flux; void output_fluxes (Flux * fluxes, scalar h, vector u) { for (Flux * f = fluxes; f->name; f++) { double flux[nl]; double tot = segment_flux (f->s, flux, h, u); if (pid() == 0) { if (!f->fp) { f->fp = fopen (f->name, "w"); if (f->desc) fprintf (f->fp, "%s\n", f->desc); } fprintf (f->fp, "%g %g", t, tot); for (int i = 0; i < nl; i++) fprintf (f->fp, " %g", flux[i]); fputc ('\n', f->fp); fflush (f->fp); } } } #endif // dimension == 2