sandbox/Antoonvh/dagan_fig2a.c

    A test for for the Stokes-particles

    We place nine Stokes Particles in a Taylor-green vortex, with gravity.

     set xr[0:3.1415]
     set yr[0:3.1415]
     set size ratio -1
     set key off
     plot 'out'
    Particle trajectories (script)

    Particle trajectories (script)

    We may compare against the result of Dagan (2025)

    Looks very similar to Dagan’s analytical trajectories. Mind that the x range extends past x = \pi, when comparing the trajectory with the sharp corner

    Looks very similar to Dagan’s analytical trajectories. Mind that the x range extends past x = \pi, when comparing the trajectory with the sharp corner

    vector u[];
    face vector mu;
    scalar rho[];// = {0};
    
    #include "stokes-particles.h"
    
    Particles nine;
    
    int main() {
      N = 512;
      L0 = pi;
      run();
    }
    
    event init (t = 0) {
      G.y = -400;
      nine = new_inertial_particles(9);
      int j = 0;
      foreach_particle_in(nine) {
        p().x = (j++ + 1)*pi/18;
        p().y = pi/2.;
        p().u2.z = 0.001; //tau
        p().u2.x = 1;     //rho - rhof
      }
      foreach() {
        u.x[] = sin(x)*cos(y);
        u.y[] = -sin(y)*cos(x);
      }
      DT = 0.01;
    }
    
    event set_dtmax (i++) {
      dt = dtnext(DT);
    }
    
    event mov(i++) {
      remove_particles (nine, y > pi/1.99);
      foreach_particle_in(nine)
        printf ("%g %g\n", x, y);
    }
    
    event stop (t = 2*pi);

    Reference

    [dagan2025]

    Yuval Dagan. Analytical solutions for particle dispersion in taylor–green vortex flows. Theoretical and Computational Fluid Dynamics, 39(1):14, 2025.