sandbox/saint-venant_ss.h

    A solver for the Saint-Venant equations

    The Saint-Venant equations can be written in integral form as the hyperbolic system ofwind_pool0. conservation laws \displaystyle \partial_t \int_{\Omega} \mathbf{q} d \Omega = \int_{\partial \Omega} \mathbf{f} ( \mathbf{q}) \cdot \mathbf{n}d \partial \Omega - \int_{\Omega} hg \nabla z_b where \Omega is a given subset of space, \partial \Omega its boundary and \mathbf{n} the unit normal vector on this boundary. For conservation of mass and momentum in the shallow-water context, \Omega is a subset of bidimensional space and \mathbf{q} and \mathbf{f} are written \displaystyle \mathbf{q} = \left(\begin{array}{c} h\\ hu_x\\ hu_y \end{array}\right), \;\;\;\;\;\; \mathbf{f} (\mathbf{q}) = \left(\begin{array}{cc} hu_x & hu_y\\ hu_x^2 + \frac{1}{2} gh^2 & hu_xu_y\\ hu_xu_y & hu_y^2 + \frac{1}{2} gh^2 \end{array}\right) where \mathbf{u} is the velocity vector, h the water depth and z_b the height of the topography. See also Popinet, 2011 for a more detailed introduction.

    User variables and parameters

    The primary fields are the water depth h, the bathymetry z_b and the flow speed \mathbf{u}. \eta is the water level i.e. z_b + h. Note that the order of the declarations is important as z_b needs to be refined before h and h before \eta.

    scalar zb[], pa[], h[], eta[];
    vector u[], ts[];
    double Pa2m = 0.00009916;

    The only physical parameter is the acceleration of gravity G. Cells are considered “dry” when the water depth is less than the dry parameter (this should not require tweaking).

    double G = 1.;
    double dry = 1e-10;

    Time-integration

    Setup

    Time integration will be done with a generic predictor-corrector scheme.

    The generic time-integration scheme in predictor-corrector.h needs to know which fields are updated.

    scalar * evolving = {h, u};

    We need to overload the default advance function of the predictor-corrector scheme, because the evolving variables (h and \mathbf{u}) are not the conserved variables h and h\mathbf{u}.

    static void advance_saint_venant (scalar * output, scalar * input, 
    				  scalar * updates, double dt)
    {
      // recover scalar and vector fields from lists
      scalar hi = input[0], ho = output[0], dh = updates[0];
      vector
        ui = { input[1], input[2] },
        uo = { output[1], output[2] },
        dhu = { updates[1], updates[2] };
    
      // new fields in ho[], uo[]
      foreach() {
        double hold = hi[];
        ho[] = hold + dt*dh[];
        eta[] = ho[] + zb[];
        if (ho[] > dry)
          foreach_dimension()
    	uo.x[] = (hold*ui.x[] + dt*dhu.x[])/ho[];
        else
          foreach_dimension()
    	uo.x[] = 0.;
      }
      boundary ({ho, eta, uo});
    }

    When using an adaptive discretisation (i.e. a quadtree)., we need to make sure that \eta is maintained as z_b + h whenever cells are refined or coarsened.

    #if QUADTREE
    static void refine_eta (Point point, scalar eta)
    {
      foreach_child()
        eta[] = zb[] + h[];
    }
    
    static void coarsen_eta (Point point, scalar eta)
    {
      eta[] = zb[] + h[];
    }
    #endif

    We use the main time loop (in the predictor-corrector scheme) to setup the initial defaults.

    event defaults (i = 0)
    {

    We overload the default ‘advance’ function of the predictor-corrector scheme and setup the refinement and coarsening methods on quadtrees.

      advance = advance_saint_venant;  
    #if QUADTREE
      eta.refine  = refine_eta;
      eta.coarsen = coarsen_eta;
    #endif
    }

    The event below will happen after all the other initial events to take into account user-defined field initialisations.

    event init (i = 0)
    {
      foreach()
        eta[] = zb[] + h[];
      boundary (all);
    }

    Computing fluxes

    Various approximate Riemann solvers are defined in riemann.h.

    #include "riemann.h"
    
    double update (scalar * evolving, scalar * updates, double dtmax)
    {

    We first recover the currently evolving fields (as set by the predictor-corrector scheme).

      scalar h = evolving[0];
      vector u = { evolving[1], evolving[2] };

    The gradients are stored in locally-allocated fields. First-order reconstruction is used for the gradient fields.

      vector gh[], geta[], gpa[];
      tensor gu[];
      for (scalar s in {gh, geta, gpa, gu})
        s.gradient = zero;
      gradients ({h, eta, pa, u}, {gh, geta, gpa, gu});

    Fh and Fq will contain the fluxes for h and h\mathbf{u} respectively and S is necessary to store the asymmetric topographic source term.

      vector Fh[], S[];
      tensor Fq[];

    The faces which are “wet” on at least one side are traversed.

      foreach_face (reduction (min:dtmax)) {
        double hi = h[], hn = h[-1,0];
        if (hi > dry || hn > dry) {

    Left/right state reconstruction

    The gradients computed above are used to reconstruct the left and right states of the primary fields h, \mathbf{u}, z_b. The “interface” topography z_{lr} is reconstructed using the hydrostatic reconstruction of Audusse et al, 2004

          double dx = Delta/2.;
          double zi = eta[] - hi + Pa2m * pa[];
          double zl = zi - dx*(geta.x[] - gh.x[] + Pa2m *  gpa.x[]); 
          double zn = eta[-1,0] - hn + Pa2m *  pa[-1,0];
          double zr = zn + dx*(geta.x[-1,0] - gh.x[-1,0] + Pa2m *  gpa.x[-1,0]);
          double zlr = max(zl, zr);
          
          double hl = hi - dx*gh.x[];
          double up = u.x[] - dx*gu.x.x[];
          double hp = max(0., hl + zl - zlr);
          
          double hr = hn + dx*gh.x[-1,0];
          double um = u.x[-1,0] + dx*gu.x.x[-1,0];
          double hm = max(0., hr + zr - zlr);

    Riemann solver

    We can now call one of the approximate Riemann solvers to get the fluxes.

          double fh, fu, fv;
          kurganov (hm, hp, um, up, Delta, &fh, &fu, &dtmax);
          fv = (fh > 0. ? u.y[-1,0] + dx*gu.y.x[-1,0] : u.y[] - dx*gu.y.x[])*fh;

    Topographic source term

    In the case of adaptive refinement, care must be taken to ensure well-balancing at coarse/fine faces (see notes/balanced.tm).

    #if QUADTREE
          if (!(cell.flags & (fghost|active))) {
    	hi = coarse(h,0,0);
    	zi = coarse(zb,0,0) + coarse(pa,0,0);
          }
          if (!(neighbor(-1,0).flags & (fghost|active))) {
    	hn = coarse(h,-1,0);
    	zn = coarse(zb,-1,0) + coarse(pa,-1,0);
          }
    #endif
          double sl = G/2.*(sq(hp) - sq(hl) + (hl + hi)*(zi - zl));
          double sr = G/2.*(sq(hm) - sq(hr) + (hr + hn)*(zn - zr));

    Flux update

          Fh.x[]   = fh;
          Fq.x.x[] = fu - sl;
          S.x[]    = fu - sr;
          Fq.y.x[] = fv;
        }
        else // dry
          Fh.x[] = Fq.x.x[] = S.x[] = Fq.y.x[] = 0.;
      }
      
      boundary_normal ({Fh, S, Fq});

    Updates for evolving quantities

    We store the divergence of the fluxes in the update fields. Note that these are updates for h and h\mathbf{u} (not \mathbf{u}).

      scalar dh = updates[0];
      vector dhu = { updates[1], updates[2] };
      
      foreach() {
        dh[] = (Fh.x[] + Fh.y[] - Fh.x[1,0] - Fh.y[0,1])/Delta;
        foreach_dimension()
          dhu.x[] = (Fq.x.x[] + Fq.x.y[] - S.x[1,0] - Fq.x.y[0,1])/Delta+ts.x[];
      }
    
      return dtmax;
    }

    Conservation of water surface elevation

    When using the default adaptive reconstruction of variables, the Saint-Venant solver will conserve the water depth when cells are refined or coarsened. However, this will not necessarily ensure that the “lake-at-rest” condition (i.e. a constant water surface elevation) is also preserved. In what follows, we redefine the refine() and coarsen() methods of the water depth h so that the water surface elevation \eta is conserved.

    We start with the reconstruction of fine “wet” cells:

    #if QUADTREE
    static void refine_elevation (Point point, scalar h)
    {
      // reconstruction of fine cells using elevation (rather than water depth)
      // (default refinement conserves mass but not lake-at-rest)
      if (h[] >= dry) {
        double eta = zb[] + h[];   // water surface elevation  
        struct { double x, y; } g; // gradient of eta
        foreach_dimension()
          g.x = gradient (zb[-1,0] + h[-1,0], eta, zb[1,0] + h[1,0])/4.;
        // reconstruct water depth h from eta and zb
        foreach_child()
          h[] = max(0, eta + g.x*child.x + g.y*child.y - zb[]);
      }
      else {

    The “dry” case is a bit more complicated. We look in a 3x3 neighborhood of the coarse parent cell and compute a depth-weighted average of the “wet” surface elevation \eta. We need to do this because we cannot assume a priori that the surrounding wet cells are necessarily close to e.g. \eta = 0.

        double v = 0., eta = 0.; // water surface elevation
        // 3x3 neighbourhood
        for (int i = -1; i <= 1; i++)
          for (int j = -1; j <= 1; j++)
    	if (h[i,j] >= dry) {
    	  eta += h[i,j]*(zb[i,j] + h[i,j]);
    	  v += h[i,j];
    	}
        if (v > 0.)
          eta /= v; // volume-averaged eta of neighbouring wet cells
        else

    If none of the surrounding cells is wet, we assume a default sealevel at zero. I have just changed this next line EML 16/1/2014

          eta = min( 0., zb[]);

    We then reconstruct the water depth in each child using \eta (of the parent cell i.e. a first-order interpolation in contrast to the wet case above) and z_b of the child cells.

        // reconstruct water depth h from eta and zb
        foreach_child()
          h[] = max(0, eta - zb[]);
      }
    }

    Cell coarsening is simpler. We first compute the depth-weighted average of \eta over all the children…

    static void coarsen_elevation (Point point, scalar h)
    {
      double eta = 0., v = 0.;
      foreach_child()
        if (h[] > dry) {
          eta += h[]*(zb[] + h[]);
          v += h[];
        }

    … and use this in combination with z_b (of the coarse cell) to compute the water depth h.

      if (v > 0.)
        h[] = max(0., eta/v - zb[]);
      else // dry cell
        h[] = 0.;
    }

    Finally we define a function which will be called by the user to apply these reconstructions.

    void conserve_elevation (void)
    {
      h.refine  = refine_elevation;
      h.coarsen = coarsen_elevation;
    }
    #else // Cartesian
    void conserve_elevation (void) {}
    #endif

    “Radiation” boundary conditions

    This can be used to implement open boundary conditions at low Froude numbers. The idea is to set the velocity normal to the boundary so that the water level relaxes towards its desired value (ref).

    #define radiation(ref) (sqrt (G*h[]) - sqrt(G*max((ref) - zb[], 0.)))

    Tide gauges

    An array of Gauge structures passed to output_gauges() will create a file (called name) for each gauge. Each time output_gauges() is called a line will be appended to the file. The line contains the time and the value of each scalar in list in the (wet) cell containing (x,y). The desc field can be filled with a longer description of the gauge.

    typedef struct {
      char * name;
      double x, y;
      char * desc;
      FILE * fp;
    } Gauge;
    
    void output_gauges (Gauge * gauges, scalar * list)
    {
      for (Gauge * g = gauges; g->name; g++) {
        if (!g->fp) {
          g->fp = fopen (g->name, "w");
          if (g->desc)
    	fprintf (g->fp, "%s\n", g->desc);
        }
        Point point = locate (g->x, g->y);
        if (point.level >= 0 && h[] > dry) {
          fprintf (g->fp, "%g", t);
          for (scalar s in list)
    	fprintf (g->fp, " %g", s[]);	
        }
        else {
          fprintf (g->fp, "%g", t);
          for (scalar s in list)
    	fprintf (g->fp, " NaN");
        }
        fputc ('\n', g->fp);
      }
    }