src/atmosphere.h

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    56
    57
    58
    59
    60
    61
    62
    63
    64
    65
    66
    67
    68
    69
    70
    71
    72
    73
    74
    75
    76
    77
    78
    79
    80
    81
    82
    83
    84
    85
    86
    87
    88
    89
    90
    91
    92
    93
    94
    95
    96
    97
    98
    99
    100
    101
    102
    103
    104
    105
    106
    107
    108
    109
    110
    111
    112
    113
    114
    115
    116
    117
    118
    119
    120
    121
    122
    123
    124
    125
    126
    127
    128
    129
    130
    131
    132
    133
    134
    135
    136
    137
    
    #include "utils.h"
    
    face vector u[], un[];
    scalar h[], hn[], zb[];
    
    // Default parameters
    // Coriolis parameter
    double F0 = 1.;
    // acceleration of gravity
    double G = 1.;
    // Viscosity
    double NU = 0.;
    
    trace
    void advection_centered (scalar f, vector u, scalar df)
    {
      foreach()
        df[] = ((f[] + f[-1,0])*u.x[] - 
    	    (f[] + f[1,0])*u.x[1,0] +
    	    (f[] + f[0,-1])*u.y[] - 
    	    (f[] + f[0,1])*u.y[0,1])/(2.*Delta);
    }
    
    trace
    void advection_upwind (scalar f, vector u, scalar df)
    {
      foreach()
        df[] = ((u.x[] < 0. ? f[] : f[-1,0])*u.x[] - 
    	    (u.x[1,0] > 0. ? f[] : f[1,0])*u.x[1,0] +
    	    (u.y[] < 0. ? f[] : f[0,-1])*u.y[] - 
    	    (u.y[0,1] > 0. ? f[] : f[0,1])*u.y[0,1])/Delta;
    }
    
    trace
    double timestep (void)
    {
      double dtmax = DT/CFL;
      dtmax *= dtmax;
      foreach(reduction(min:dtmax)) {
        Delta *= Delta;
        if (h[] > 0.) {
          double dt = Delta/(G*h[]);
          if (dt < dtmax) dtmax = dt;
        }
        foreach_dimension()
          if (u.x[] != 0.) {
    	double dt = Delta/sq(u.x[]);
    	if (dt < dtmax) dtmax = dt;
          }
      }
      return sqrt (dtmax)*CFL;
    }
    
    trace
    void momentum (vector u, scalar h, vector du)
    {
      scalar ke[];
      vertex scalar psi[];
      scalar dux[], dvy[];
      vector d;
      d.x = dux; d.y = dvy;
    
      foreach() {
    #if 1
        ke[] = (sq(u.x[] + u.x[1,0]) + sq(u.y[] + u.y[0,1]))/8.;
    #else
        double uc = u.x[]*u.x[] + u.x[1,0]*u.x[1,0];
        double vc = u.y[]*u.y[] + u.y[0,1]*u.y[0,1];
        ke[] = (uc + vc)/4.;
    #endif
        foreach_dimension()
          d.x[] = (u.x[1,0] - u.x[])/Delta;
      }
      foreach_vertex()
        psi[] = (u.y[] - u.y[-1,0] + u.x[0,-1] - u.x[])/Delta;  
    
      coord f = {1.,-1.};
      foreach_face()
        du.x[] = 
          - (G*(h[] + zb[]) + ke[] - G*(h[-1,0] + zb[-1,0]) - ke[-1,0])/Delta
          + f.x*(((psi[] + psi[0,1])/2. + F0)*
    	     (u.y[] + u.y[0,1] + u.y[-1,0] + u.y[-1,1])/4.)
          + NU*(u.x[0,1] + u.x[0,-1] - 2.*u.x[])/sq(Delta)
          + NU*(d.x[] - d.x[-1,0])/Delta;
    }
    
    trace
    void advance (double t, scalar * f, scalar * df)
    {
      vector u = {f[0], f[1]}, du = {df[0], df[1]};
      scalar h = f[2], dh = df[2];
    
      advection_centered (h, u, dh);
      momentum (u, h, du);
    }
    
    void update (double t, scalar * f)
    {
    }
    
    event defaults (i = 0)
    {
      foreach()
        h[] = 1.;
    }
    
    event init (i = 0)
    {
    }
    
    void run (void)
    {
      init_grid (N);
    
      timer start = timer_start();
      iter = 0, t = 0;
      while (events (true)) {
        double dt = dtnext (timestep ());
    #if 1
        advection_centered (h, u, hn);
        foreach()
          h[] += hn[]*dt;
        momentum (u, h, un);
        foreach_face()
          u.x[] += un.x[]*dt;
    #else /* unstable! */
        scalar f[3] = { u, v, h };
        scalar df[2][3] = {{ un,  vn,  hn },
    		       { un1, vn1, hn1 }};
        runge_kutta (2, t, dt, 3, f, df, advance, update);
    #endif
        iter = inext, t = tnext;
      }
      timer_print (start, iter, 0);
    
      free_grid ();
    }