src/discharge.h

    Shallow-water flux computation at boundaries

    In order to impose a given flow rate Q_b through a boundary b, when solving the Saint-Venant equations, we need to compute the water level \eta_b corresponding to this flow rate. The flow rate Q is a complicated, non-linear function of the water level, the bathymetry z_b and the velocity normal to the boundary u_n.

    We first define a function which, given \eta_b and the current topography and velocity fields (defined by the Saint-Venant solver), returns the flow rate through boundary b.

    The extent of the boundary can also be limited to points for which limit[] = value.

    struct Eta_b {
      // compulsory arguments
      double Q_b;
      bid b;
      // optional arguments
      scalar limit;
      double value;
      double prec; // precision (default 0.1%)
    };
    
    static double bflux (struct Eta_b p, double eta_b)
    {
      double Q = 0.;
      scalar limit = p.limit;
      foreach_boundary (p.b, reduction(+:Q))
        if (limit.i < 0 || limit[] == p.value) {
          scalar u_n = ig ? u.x : u.y; // normal velocity component  
          double sign = - (ig + jg), ub = u_n[]*sign;
          double hn = max (eta_b - zb[], 0.), hp = max(h[],0.);
          if (hp > dry || hn > dry) {
    	double fh, fu, dtmax;
    	kurganov (hn, hp, ub, ub, 0., &fh, &fu, &dtmax);
    	Q += fh*Delta; // fixme: metric
          }
        }
      return Q;
    }

    To find the water level \eta_b corresponding to the flow rate Q_b we want to impose, we need to invert the function above i.e. find \eta_b such that \displaystyle Q[z_b,u_n](\eta_b) = Q_b We do this using the false position method.

    static double falsepos (struct Eta_b p,
    			double binf, double qinf,
    			double bsup, double qsup)
    {
      int n = 0;
      double newb, newq;
      qinf -= p.Q_b;
      qsup -= p.Q_b;
      do {
        newb = (binf*qsup - bsup*qinf)/(qsup - qinf);
        newq = bflux (p, newb) - p.Q_b;
        if (newq > 0.)
          bsup = newb, qsup = newq;
        else
          binf = newb, qinf = newq;
        n++;
      } while (fabs(newq/p.Q_b) > p.prec && n < 100);
    
      if (n >= 100)
        fprintf (stderr, "WARNING: eta_b(): convergence not reached\n");
      
      return newb;
    }

    User interface

    Given a target flux Q_b and a boundary b (optionally limited to points for which limit[] = value), this function returns the corresponding water level \eta_b.

    double eta_b (double Q_b, bid b,
    	      scalar limit = {-1}, double value = 0, double prec = 0.001)
    {
      double zmin = HUGE, etas = 0., hs = 0.;
      foreach_boundary (b, reduction(+:etas) reduction(+:hs) reduction(min:zmin))
        if (limit.i < 0 || limit[] == value) {
          if (zb[] < zmin)
    	zmin = zb[];
          etas += Delta*h[]*eta[];
          hs += Delta*h[];
        }
    
      if (Q_b <= 0.)
        return zmin - 1.;

    We try to find good bounds on the solution.

      double etasup = hs > 0. ? etas/hs : zmin;
      struct Eta_b p = { Q_b, b, limit, value, prec };
      double Qsup = bflux (p, etasup), etainf = zmin, Qinf = 0.;
      double h0 = etasup - zmin;
      if (h0 < dry)
        h0 = 1.;
      int n = 0;
      while (Qsup < p.Q_b && n++ < 100) {
        etainf = etasup, Qinf = Qsup;
        etasup += h0;
        Qsup = bflux (p, etasup);
      }
      if (n >= 100)
        fprintf (stderr, "WARNING: eta_b() not converged\n");
      return falsepos (p, etainf, Qinf, etasup, Qsup);
    }

    Usage

    Tests