src/test/capwave.c

    Capillary wave

    This is the classical test case first proposed in Popinet & Zaleski, 1999.

    We use a constant-resolution grid, the Navier–Stokes solver with VOF interface tracking (optionally coupled with levelset) and surface tension (optionally using the integral formulation).

    #include "grid/multigrid.h"
    #include "navier-stokes/centered.h"
    #if CLSVOF
    # include "two-phase-clsvof.h"
    # include "integral.h"
    # include "curvature.h"
    #else
    # include "vof.h"
    # include "tension.h"

    The interface is represented by the volume fraction field c.

    scalar f[], * interfaces = {f};
    #endif
    #include "prosperetti.h"

    We make sure that the boundary conditions for the face-centered velocity field are consistent with the centered velocity field (this affects the advection term).

    uf.n[left]   = 0.;
    uf.n[right]  = 0.;
    uf.n[top]    = 0.;
    uf.n[bottom] = 0.;

    We will store the accumulated error in se and the number of samples in ne.

    double se = 0; int ne = 0;
    
    int main() {

    The domain is 2x2 to minimise finite-size effects. The surface tension is one and the viscosity is constant.

      size (2. [1]);
      Y0 = -L0/2.;
    #if CLSVOF
      const scalar sigma[] = 1.;
      d.sigmaf = sigma;
    #else
      f.sigma = 1.;
    #endif
      TOLERANCE = 1e-6 [*];
      mu[] = {0.0182571749236, 0.0182571749236};

    We vary the resolution to check for convergence.

      for (N = 16; N <= 128; N *= 2) {
        se = 0, ne = 0;
        run();
      }
    }

    The initial condition is a small amplitude plane wave of wavelength unity.

    event init (t = 0) {
      double k = 2., a = 0.01;
    #if CLSVOF
      foreach()
        d[] = y - a*cos (k*pi*x);
    #else
      fraction (f, y - a*cos (k*pi*x));
    #endif
    }

    By default tracers are defined at t-\Delta t/2. We use the first keyword to move VOF advection before the amplitude output i.e. at t+\Delta/2. This improves the results.

    event vof (i++, first);

    We output the amplitude at times matching exactly those in the reference file.

    event amplitude (t += 3.04290519077e-3; t <= 2.2426211256) {

    To get an accurate amplitude, we reconstruct interface position (using height functions) and take the corresponding maximum.

      scalar pos[];
      position (f, pos, {0,1 [0]});
      double max = statsf(pos).max;

    We output the corresponding evolution in a file indexed with the number of grid points N.

      char name[80];
      sprintf (name, "wave-%d", N);
      static FILE * fp = fopen (name, "w");
      fprintf (fp, "%g %g\n", t*11.1366559937, max);
      fflush (fp);

    To compute the RMS error, we get data from the reference file prosperetti.h and add the difference to the accumulated error.

      se += sq(max - prosperetti[ne][1]); ne++;
    }

    At the end of the simulation, we output on standard error the resolution (number of grid points per wavelength) and the relative RMS error.

    event error (t = end)
      fprintf (stderr, "%g %g\n", N/L0, sqrt(se/ne)/0.01);
    
    #if 0
    event gfsview (i += 1) {
      static FILE * fp = popen ("gfsview2D -s ../capwave.gfv", "w");
      output_gfs (fp);
    }
    #endif

    Results

    set xlabel 'tau'
    set ylabel 'Relative amplitude'
    plot '../prosperetti.h' u 2:4 w l t "Prosperetti", \
         'wave-128' every 10 w p t "Basilisk", \
         '../capwave-clsvof/wave-128' every 10 w p t "Basilisk (CLSVOF)"
    Evolution of the amplitude of the capillary wave as a function of non-dimensional time \tau=\omega_0 t (script)

    Evolution of the amplitude of the capillary wave as a function of non-dimensional time \tau=\omega_0 t (script)

    set xlabel 'Number of grid points'
    set ylabel 'Relative RMS error'
    set logscale y
    set logscale x 2
    set grid
    plot [5:200][1e-4:1]\
         'log' t "Basilisk" w lp, 2./x**2 t "Second order", \
         '../capwave-clsvof/log' t "Basilisk (CLSVOF)" w lp, \
         2./x**2 t "Second order"
    Convergence of the RMS error as a function of resolution (number of grid points per wavelength) (script)

    Convergence of the RMS error as a function of resolution (number of grid points per wavelength) (script)

    See also