src/test/rising.c

    Rising bubble

    A two-dimensional bubble is released in a rectangular box and raises under the influence of buoyancy. This test case was proposed by Hysing et al, 2009 (see also the FEATFLOW page).

    We solve the incompressible, variable-density, Navier–Stokes equations with interfaces and surface tension. We can solve either the axisymmetric or planar version. We can used standard or “reduced” gravity. We also test levelset interface tracking and a momentum formulation.

    #if AXIS
    # include "axi.h" // fixme: does not run with -catch
    #endif
    #if MOMENTUM
    # include "momentum.h"
    #else
    #include "navier-stokes/centered.h"
    #if CLSVOF
    # include "two-phase-clsvof.h"
    #elif LEVELSET
    # include "two-phase-levelset.h"
    #else
    # include "two-phase.h"
    #endif
    #endif
    #if LEVELSET
    # include "integral.h"
    #else
    # include "tension.h"
    #endif
    #if REDUCED
    # include "reduced.h"
    #endif
    
    #ifndef LEVEL
    # define LEVEL 8
    #endif

    The boundary conditions are slip lateral walls (the default) and no-slip on the right and left walls.

    #if MOMENTUM
    q.t[right] = dirichlet(0);
    q.t[left]  = dirichlet(0);
    #else
    u.t[right] = dirichlet(0);
    u.t[left]  = dirichlet(0);
    #endif
    
    int main() {

    The domain will span [0:2]\times[0:0.5] and will be resolved with 256\times 64 grid points.

      size (2 [1]);
      DT = 1. [0,1];
      init_grid (1 << LEVEL);

    Hysing et al. consider two cases (1 and 2), with the densities, dynamic viscosities and surface tension of fluid 1 and 2 given below.

      rho1 = 1000.[0], mu1 = 10.;  // works also with rho1 = [-3,0,1]
    #if CASE2
      rho2 = 1., mu2 = 0.1;
    #else
      rho2 = 100., mu2 = 1.;
    #endif
    
    #if LEVELSET
      #if CASE2
      const scalar sigma[] = 1.96;
      #else
      const scalar sigma[] = 24.5;
      #endif
      d.sigmaf = sigma;
    #else // !LEVELSET
      #if CASE2
      f.sigma = 1.96;
      #else
      f.sigma = 24.5;
      #endif
    #endif // !LEVELSET

    We reduce the tolerance on the Poisson and viscous solvers to improve the accuracy.

      TOLERANCE = 1e-4 [*];
    #if REDUCED
      G.x = -0.98;
      Z.x = 1.;
    #endif
      run();
    }
    
    event init (t = 0) {

    The domain is a rectangle. We only simulate half the bubble.

      mask (y > 0.5 ? top : none);

    The bubble is centered on (0.5,0) and has a radius of 0.25.

    #if LEVELSET
      foreach()
        d[] = sqrt (sq(x - 0.5) + sq(y)) - 0.25;
    #else
      fraction (f, sq(x - 0.5) + sq(y) - sq(0.25));
    #endif
    }

    We add the acceleration of gravity.

    #if !REDUCED
    event acceleration (i++) {
      face vector av = a;
      foreach_face(x)
        av.x[] -= 0.98;
    }
    #endif

    A utility function to check the convergence of the multigrid solvers.

    void mg_print (mgstats mg)
    {
      if (mg.i > 0 && mg.resa > 0.)
        printf ("%d %g %g %g %d ", mg.i, mg.resb, mg.resa,
    	    mg.resb > 0 ? exp (log (mg.resb/mg.resa)/mg.i) : 0.,
    	    mg.nrelax);
    }

    We log the position of the center of mass of the bubble, its velocity and volume as well as convergence statistics for the multigrid solvers.

    event logfile (i++) {
      double xb = 0., vb = 0., sb = 0.;
      foreach(reduction(+:xb) reduction(+:vb) reduction(+:sb)) {
        double dv = (1. - f[])*dv();
    #if MOMENTUM
        vb += q.x[]*dv/rho(f[]);
    #else
        vb += u.x[]*dv;
    #endif
        xb += x*dv;
        sb += dv;
      }
      static double sb0 = 0.;
      if (i == 0) {
        printf ("t sb -1 xb vb dt perf.t perf.speed\n");
        sb0 = sb;
      }
      printf ("%g %g %g %g %g %g %g %g ", 
    	  t, (sb - sb0)/sb0, -1., xb/sb, vb/sb, dt, perf.t, perf.speed);
    #if !MOMENTUM
      mg_print (mgp);
      mg_print (mgpf);
      mg_print (mgu);
    #endif
      putchar ('\n');
      fflush (stdout);
    }

    At t=3 we output the shape of the bubble.

    event interface (t = 3.) {
      output_facets (f, stderr);
    }
    
    #if ADAPT
    event adapt (i++) {
      adapt_wavelet ({f,u}, (double[]){5e-4,1e-3,1e-3}, LEVEL);
    }
    #endif

    Results

    The final shape of the bubble is compared to that obtained with the MooNMD Lagrangian solver (see the FEATFLOW page) at the highest resolution. We also display the shape of the axisymmetric version of the test. The axisymmetric bubble moves much faster.

    set term push
    set term @SVG size 640,320
    set size ratio -1
    set grid
    plot [][0:0.4]'../c1g3l4s.txt' u 2:($1-0.5) w l t 'MooNMD', \
                  'log' u 1:2 w l t 'Basilisk', \
                  '../rising-levelset/log' u 1:2 w l t 'Basilisk (levelset)', \
                  '../rising-clsvof/log' u 1:2 w l t 'Basilisk (CLSVOF)', \
                  '../rising-axi/log' u 1:2 w l t 'Basilisk (axisymmetric)', \
                  '../rising-axi-clsvof/log' u 1:2 w l t 'Basilisk (axi + CLSVOF)', \
                  '../rising-axi-momentum/log' u 1:2 w l t 'Basilisk (axi + momentum)'
    Bubble shapes at the final time (t=3) for test case 1. (script)

    Bubble shapes at the final time (t=3) for test case 1. (script)

    For test case 2, the mesh in Basilisk is too coarse to accurately resolve the skirt.

    set key bottom left
    plot [][0:0.4]'../c2g3l4s.txt' u 2:($1-0.5) w l t 'MooNMD', \
                  '../rising2/log' u 1:2 w l t 'Basilisk', \
                  '../rising2-levelset/log' u 1:2 w l t 'Basilisk (levelset)', \
                  '../rising2-clsvof/log' u 1:2 w l t 'Basilisk (CLSVOF)'
    Bubble shapes at the final time (t=3) for test case 2. (script)

    Bubble shapes at the final time (t=3) for test case 2. (script)

    The agreement for the bubble rise velocity with time is also good.

    set term pop
    reset
    set grid
    set xlabel 'Time'
    set key bottom right
    plot [0:3][0:]'../c1g3l4.txt' u 1:5 w l t 'MooNMD', \
                  'out' u 1:5 w l t 'Basilisk', \
                  '../rising-levelset/out' u 1:5 w l t 'Basilisk (levelset)', \
                  '../rising-clsvof/out' u 1:5 w l t 'Basilisk (CLSVOF)',     \
                  '../rising-axi/out' u 1:5 w l t 'Basilisk (axisymmetric)',  \
                  '../rising-axi-clsvof/out' u 1:5 w l t 'Basilisk (axi + CLSVOF)',  \
                  '../rising-axi-momentum/out' u 1:5 w l t 'Basilisk (axi + momentum)'
    Rise velocity as a function of time for test case 1. (script)

    Rise velocity as a function of time for test case 1. (script)

    reset
    set grid
    set xlabel 'Time'
    set ylabel '(vb - vb_0)/vb_0'
    set key bottom left
    plot [0:3]'out' u 1:2 w l t 'Basilisk', \
              '../rising-levelset/out' u 1:2 w l t 'Basilisk (levelset)',   \
              '../rising-clsvof/out' u 1:2 w l t 'Basilisk (CLSVOF)',	\
              '../rising-axi/out' u 1:2 w l t 'Basilisk (axisymmetric)',	\
              '../rising-axi-clsvof/out' u 1:2 w l t 'Basilisk (axi + CLSVOF)',	\
              '../rising-axi-momentum/out' u 1:2 w l t 'Basilisk (axi + momentum)'
    Relative volume difference as a function of time for test case 1. (script)

    Relative volume difference as a function of time for test case 1. (script)

    reset
    set grid
    set xlabel 'Time'
    set key bottom right
    plot [0:3][0:]'../c2g3l4.txt' u 1:5 w l t 'MooNMD', \
                  '../rising2/out' u 1:5 w l t 'Basilisk', \
                  '../rising2-levelset/out' u 1:5 w l t 'Basilisk (levelset)', \
                  '../rising2-clsvof/out' u 1:5 w l t 'Basilisk (CLSVOF)'
    Rise velocity as a function of time for test case 2. (script)

    Rise velocity as a function of time for test case 2. (script)

    reset
    set grid
    set xlabel 'Time'
    set ylabel '(vb - vb_0)/vb_0'
    set key top left
    plot [0:3]'../rising2/out' u 1:2 w l t 'Basilisk',		       \
              '../rising2-levelset/out' u 1:2 w l t 'Basilisk (levelset)', \
              '../rising2-clsvof/out' u 1:2 w l t 'Basilisk (CLSVOF)'
    Relative volume difference as a function of time for test case 2. (script)

    Relative volume difference as a function of time for test case 2. (script)