src/viscosity-embed.h
Viscous solver with embedded boundaries
We consider the Stokes equations \displaystyle \rho \mathbf{u}_t = \rho \mathbf{g} + \nabla \cdot [\mu ( \nabla \mathbf{u} + \nabla^T \mathbf{u})] with \mathbf{g} the acceleration and T the transpose.
In the case of incompressible flow and uniform viscosity, the viscous term can be further simplified. Since \displaystyle \nabla \cdot (\mu \nabla \mathbf{u}) = (\nabla \mu) \cdot \nabla \mathbf{u} + \mu \nabla (\nabla \cdot \mathbf{u}) = 0 the viscous term reduces to \displaystyle \nabla \cdot [\mu ( \nabla \mathbf{u} + \nabla^T \mathbf{u})] = \nabla \cdot (\mu \nabla^T \mathbf{u}) = \nabla^2 (\mu \mathbf{u}) and the equations for each velocity component are decoupled. For each component v_i, the following discrete implicit equation is solved using the multigrid solver \displaystyle \frac{\Delta t} \nabla (\mu \nabla v_i^{n+1}) - (\rho + \lambda_i) v_i^{n+1} + \underbrace{(\rho v_i^{n} + g_i\, Delta t)}_{r_i} = 0 \lambda_i is a possible extra term due to the metric.
#include "poisson.h"
struct Viscosity {
face vector mu;
scalar rho;
double dt;
double (* embed_flux) (Point, scalar, vector, double *);
};
#if AXI
# define lambda ((coord){0, dt*(mu.x[] + mu.x[1] \
+ mu.y[] + mu.y[0,1])*sq(cs[]) \
/(fm.x[] + fm.x[1] + fm.y[] + fm.y[0,1] + SEPS)/(cm[] + SEPS)})
#else // not AXI
# define lambda ((coord){0.,0.,0.})
#endif
// Note how the relaxation function uses "naive" gradients i.e. not
// the face_gradient_* macros.
static void relax_diffusion (scalar * a, scalar * b, int l, void * data)
{
struct Viscosity * p = (struct Viscosity *) data;
(const) face vector mu = p->mu;
(const) scalar rho = p->rho;
double dt = p->dt;
vector u = vector(a[0]), r = vector(b[0]);
double (* embed_flux) (Point, scalar, vector, double *) = p->embed_flux;
foreach_level_or_leaf (l, nowarning) {
double avgmu = 0.;
foreach_dimension()
avgmu += mu.x[] + mu.x[1];
avgmu = dt*avgmu + SEPS;
foreach_dimension() {
double c = 0.;
double d = embed_flux ? embed_flux (point, u.x, mu, &c) : 0.;
scalar s = u.x;
double a = 0.;
foreach_dimension()
a += mu.x[1]*s[1] + mu.x[]*s[-1];
u.x[] = (dt*a + (r.x[] - dt*c)*sq(Delta))/
(sq(Delta)*(rho[] + lambda.x + dt*d) + avgmu);
}
}
#if TRASH
vector u1[];
foreach_level_or_leaf (l)
foreach_dimension()
u1.x[] = u.x[];
trash ({u});
foreach_level_or_leaf (l)
foreach_dimension()
u.x[] = u1.x[];
#endif
}
static double residual_diffusion (scalar * a, scalar * b, scalar * resl,
void * data)
{
struct Viscosity * p = (struct Viscosity *) data;
(const) face vector mu = p->mu;
(const) scalar rho = p->rho;
double dt = p->dt;
double (* embed_flux) (Point, scalar, vector, double *) = p->embed_flux;
vector u = vector(a[0]), r = vector(b[0]), res = vector(resl[0]);
double maxres = 0.;
#if TREE
/* conservative coarse/fine discretisation (2nd order) */
foreach_dimension() {
scalar s = u.x;
face vector g[];
foreach_face()
g.x[] = mu.x[]*face_gradient_x (s, 0);
foreach (reduction(max:maxres), nowarning) {
double a = 0.;
foreach_dimension()
a += g.x[] - g.x[1];
res.x[] = r.x[] - (rho[] + lambda.x)*u.x[] - dt*a/Delta;
if (embed_flux) {
double c, d = embed_flux (point, u.x, mu, &c);
res.x[] -= dt*(c + d*u.x[]);
}
if (fabs (res.x[]) > maxres)
maxres = fabs (res.x[]);
}
}
#else
/* "naive" discretisation (only 1st order on trees) */
foreach (reduction(max:maxres), nowarning)
foreach_dimension() {
scalar s = u.x;
double a = 0.;
foreach_dimension()
a += mu.x[0]*face_gradient_x (s, 0) - mu.x[1]*face_gradient_x (s, 1);
res.x[] = r.x[] - (rho[] + lambda.x)*u.x[] - dt*a/Delta;
if (embed_flux) {
double c, d = embed_flux (point, u.x, mu, &c);
res.x[] -= dt*(c + d*u.x[]);
}
if (fabs (res.x[]) > maxres)
maxres = fabs (res.x[]);
}
#endif
return maxres;
}
#undef lambda
double TOLERANCE_MU = 0.; // default to TOLERANCE
trace
mgstats viscosity (vector u, face vector mu, scalar rho, double dt,
int nrelax = 4, scalar * res = NULL)
{
vector r[];
foreach()
foreach_dimension()
r.x[] = rho[]*u.x[];
restriction ({mu, rho});
struct Viscosity p = { mu, rho, dt };
p.embed_flux = u.x.boundary[embed] != antisymmetry ? embed_flux : NULL;
return mg_solve ((scalar *){u}, (scalar *){r},
residual_diffusion, relax_diffusion, &p, nrelax, res,
minlevel = 1, // fixme: because of root level
// BGHOSTS = 2 bug on trees
tolerance = TOLERANCE_MU ? TOLERANCE_MU : TOLERANCE);
}