src/axi.h
Axisymmetric coordinates
For problems with a symmetry of revolution around the z-axis of a cylindrical coordinate system. The longitudinal coordinate (z-axis) is x and the radial coordinate (\rho- or r-axis) is y. Note that y (and so Y0) cannot be negative.
We first define a macro which will be used in some geometry-specific code (e.g. curvature computation).
#define AXI 1
On trees we need refinement functions.
#if TREE
static void refine_cm_axi (Point point, scalar cm)
{
fine(cm,0,0) = fine(cm,1,0) = y - Delta/4.;
fine(cm,0,1) = fine(cm,1,1) = y + Delta/4.;
}
static void refine_face_x_axi (Point point, scalar fm)
{
if (!is_refined(neighbor(-1))) {
fine(fm,0,0) = y - Delta/4.;
fine(fm,0,1) = y + Delta/4.;
}
if (!is_refined(neighbor(1)) && neighbor(1).neighbors) {
fine(fm,2,0) = y - Delta/4.;
fine(fm,2,1) = y + Delta/4.;
}
fine(fm,1,0) = y - Delta/4.;
fine(fm,1,1) = y + Delta/4.;
}
static void refine_face_y_axi (Point point, scalar fm)
{
if (!is_refined(neighbor(0,-1)))
fine(fm,0,0) = fine(fm,1,0) = max(y - Delta/2., 1e-20);
if (!is_refined(neighbor(0,1)) && neighbor(0,1).neighbors)
fine(fm,0,2) = fine(fm,1,2) = y + Delta/2.;
fine(fm,0,1) = fine(fm,1,1) = y;
}
#endif
event metric (i = 0) {
By default cm is a constant scalar field. To make it variable, we need to allocate a new field. We also move it at the begining of the list of variables: this is important to ensure the metric is defined before other fields.
if (is_constant(cm)) {
scalar * l = list_copy (all);
cm = new scalar;
free (all);
all = list_concat ({cm}, l);
free (l);
}
The volume/area of a cell is proportional to r (i.e. y). We need to set boundary conditions at the top and bottom so that cm is interpolated properly when refining/coarsening the mesh.
scalar cmv = cm;
foreach()
cmv[] = y;
cm[top] = dirichlet(y);
cm[bottom] = dirichlet(y);
We do the same for the length scale factors. The “length” of faces on the axis of revolution is zero (y=r=0 on the axis). To avoid division by zero we set it to epsilon (note that mathematically the limit is well posed).
if (is_constant(fm.x)) {
scalar * l = list_copy (all);
fm = new face vector;
free (all);
all = list_concat ((scalar *){fm}, l);
free (l);
}
face vector fmv = fm;
foreach_face()
fmv.x[] = max(y, 1e-20);
fm.t[top] = dirichlet(y);
fm.t[bottom] = dirichlet(y);
We set our refinement/prolongation functions on trees.
#if TREE
cm.refine = cm.prolongation = refine_cm_axi;
fm.x.prolongation = refine_face_x_axi;
fm.y.prolongation = refine_face_y_axi;
#endif
}
See also
Usage
Examples
Tests
- Convergence of axisymmetric viscous terms
- Soluble gas diffusing from a rising bubble
- Axisymmetric mass conservation
- Charge relaxation in an axisymmetric insulated conducting column
- Convergence of axisymmetric EHD stresses
- Impact of a viscoelastic drop on a solid
- Axisymmetric Poiseuille flow
- Refinement of axisymmetric metric and face fields
- Rising bubble
- Soluble gas diffusing from a static bubble
- Boundary layer on a rotating disk
- Equilibrium of a droplet suspended in an electric field